studying the relationship between SST in the tropical Indian Ocean (TIO), tropical western Pacific (TWP), and tropical eastern Pacific (TEP) and East Asian summer rainfall (EASR), using data provided by NOAA/OAR/ESRL PSD and the National Climate Center of China for the period 1979-2008, an index, SSTDI, was defined to describe the SST difference between the TIO and TWP. In comparison with the winter ENSO, the spring SST contrast between the TIO and TWP was found to be more significantly associated with summer rainfall in East Asia, especially along the EASR band and in Northeast China. This spring SST contrast can persist into summer, resulting in a more significant meridional teleconnection pattern of lower-tropospheric circulation anomalies over the western North Pacific and East Asia. These circulation anomalies are dynamically consistent with the summer rainfall anomaly along the EASR band. When the SSTDI is higher (lower) than normal, the EASR over the Yangtze River valley, Korea, and central and southern Japan is heavier (less) than normal. The present results suggest that this spring SST contrast can be used as a new and better predictor of EASR anomalies.
The eight datasets of the summer (June-August) surface sensible heat (SH) flux over the Tibetan Plateau (TP) are compared on the time scales of the climatology,interannual variability and linear trend during 1980-2006.These data sets include five reanalyses (National Center for Environmental Prediction reanalysis,NCEPR1 and NCEPR2,NCEP climate forecast system reanalysis,CFSR,Japanese 25-year reanalysis,JRA,and European Centre for Medium Range Weather Forecasts reanalysis,ERA40),two land surface model outputs (Noah model data of Global Land Data Assimilation System version 2,G2_Noah,and Simple Biosphere version 2 output by Yang et al.,YSiB2),and estimated SH based on China Meteorological Administration (CMA) station observations,ObCh.The results suggest that the summer SH on the TP differs from one dataset to another due to different inputs and calculations.Climatologically,the ERA40 and JRA distribute rather uniformly while the other six products show similar regional disparities,that is,larger in the west than in the east and stronger in the north and the south than in the middle of the plateau.The mean magnitude of the SH averaged over the 76 stations above the TP varies considerably among each dataset with the difference of more than 20 W m?2 between the maximum (G2_Noah) and minimum (ObCh).Nevertheless,they are consistent in the interannual variability and mostly show a significant decreasing trend corresponding to the weakening surface wind speed,in spite of the distinct trend for the ground-air temperature difference among the different data sets.These two consistencies indicate the particular availability of the SH products,which is helpful to the relevant climate dynamics research.
This study evaluates the seasonal cycle of the activity of convectively coupled equatorial waves(CCEWs),including mixed Rossby-gravity(MRG) and tropical depression-type(TD-type) waves,based on the twentieth century experiments of 18 global climate models(GCMs) from the Coupled Model Intercomparison Project phase 3(CMIP3).The ensemble result of the 18 GCMs shows that the observed seasonal cycle of MRG and TD-type wave activity cannot be well reproduced.The seasonal transition of wave activity from the southern hemisphere to the northern hemisphere is delayed from April in the observations to May in the simulations,indicating that the simulated active season of tropical waves in the northern hemisphere is delayed and shortened.This delayed seasonal transition of tropical wave activity is associated with a delayed seasonal transition of simulated mean precipitation.The mean precipitation in April and May shows a double-ITCZ problem,and the horizontal resolution is important to the delayed seasonal transition of wave activity.Because of the coincident seasonal cycle of MRG and TD-type wave activity and tropical cyclone(TC) geneses,the delayed seasonal transition of wave activity may imply a similar problem of TC genesis in the GCMs,namely,a delayed and shortened TC season in the northern hemisphere.