We consider the g-function related to a class of radial functions which gives a characterization of the L^p-norm of a function on the Heisenberg group.
The classical Hardy theorem asserts that f and its Fourier transform f can not both be very rapidly decreasing. This theorem was generalized on Lie groups and also for the Fourier-Jacobi transform. However, on SU(1, 1) there are infinitely many “good” functions in the sense that f and its spherical Fourier transform y both have good decay. In this paper, we shall characterize such functions on SU(1, 1).
The boundedness of maximal multilinear commutator on certain weighted spaces is obtained. The boundedness of mulitilinear commutators of singular integrals with Calderon-Zygmund kernel on Herz-type spaces is also considered.
Let b^→=(b1,…,bm),bi∈∧°βi(R^n),1≤i≤m,0〈βi〈β,0〈β〈1,[B^→,T]f(x)=∫R^n(b1(x)-b1(y))…(bm(x)-bm(y))K(x-y)f(y)dy,where K is a Calder6n-Zygmund kernel. In this paper, we show that [b^→,T] is bounded from L^p(R^n) to Fp^β,∞(R^n),as well as [b^→,1α]form L^p (R^n) to Fp^β,∞(R^n),where 1/q=1/p-α/n.