The semi-diurnal mean aerosol mass concentration, chemical composition, and optical properties of PM2.s were investigated in Shanghai during the spring of 2012. Slight pollution was observed during the study period. The average PM2.s concentration was 64.11± 22.83μg/m3. The mean coefficients of extinction, scattering, and absorption at 532 nm were 125.9 ± 78.5, 91.1 ± 56.3, and 34.9 ±23.6 Mm-1, respectively. A relatively low mean single scattering alhedo at 532 nm (0.73 ±0.04) and low level of elemental carbon (EC, 2.67± 1.96 μg/m3) suggested that the light absorption was enhanced due to the internal mixing of the EC. Sulfate contributed the most to aerosol light scattering in Shanghai. The chemical composition of PM2.5 was dominated by particulate organic matter, sulfate, nitrate, ammonium, and EC. Anthropogenic sources made a significant contribution to the emission and loading of the particulate pollutants. A relatively good correlation between the aerosol chemical composition and the cloud condensation nuclei (CCN) activation indicated that aerosol chemistry is an important factor that influences the saturated hygroscopicity and growth of the aerosol.
Atmospheric pollutants including SO_2, NO_2, CO, O_3 and inhalable particulate matter(PM2.5 and PM10) were monitored continuously from March 2014 to February 2015 to investigate characteristics of air pollution at Lhasa, Tibetan Plateau. Species exhibited similar seasonal variations except O_3, with the peaks in winter but low valleys in summer. The maximum O_3 concentration was observed in spring, followed by summer, autumn, and winter. The positive correlation between O_3 and PM10 in spring indicated similar sources of them, and was assumed to be turbulent transport. Temperature was the dominant meteorological factor for most species in spring. High temperature accelerates O_3 photochemistry, and favors air disturbance which is conductive to dust resuspension in spring. Relative humidity(RH) and atmospheric pressure were the main meteorological factors in summer. RH showed negative correlations with species, while atmospheric pressure posed opposite situation. Wind speed(WS) was the dominant meteorological factor in autumn, the negative correlations between WS and species indicated diffusion by wind. Most species showed non-significant correlations with meteorological factors in winter, indicating the dependence of pollution on source emission rather than restriction by meteorology. Pollution weather character indicated that emissions were from biomass burning and dust suspension, and meteorological factors also played an important role. Air stream injection from the stratosphere was observed during O_3 pollution period. Air parcels from Southwest Asia were observed during air pollution period in winter. An enhancement in air pollutants such as O_3 would be expected in the future, more attention should be given to countermeasures for prevention of air pollution in the future.
Bu DuoLulu CuiZhenzhen WangRui LiLiwu ZhangHongbo FuJianmin ChenHuifang ZhangA.Qiong
The characteristic ratios of volatile organic compounds(VOCs) to i-pentane, the indicator of vehicular emissions, were employed to apportion the vehicular and non-vehicular contributions to reactive species in urban Shanghai. Two kinds of tunnel experiments, one tunnel with more than 90% light duty gasoline vehicles and the other with more than 60% light duty diesel vehicles, were carried out to study the characteristic ratios of vehicle-related emissions from December 2009 to January 2010. Based on the experiments, the characteristic ratios of C6–C8aromatics to i-pentane of vehicular emissions were 0.53 ± 0.08(benzene), 0.70 ± 0.12(toluene),0.41 ± 0.09(m,p-xylenes), 0.16 ± 0.04(o-xylene), 0.023 ± 0.011(styrene), and 0.15 ± 0.02(ethylbenzene), respectively. The source apportionment results showed that around 23.3% of C6–C8 aromatics in urban Shanghai were from vehicular emissions, which meant that the non-vehicular emissions had more importance. These findings suggested that emission control of non-vehicular sources, i.e. industrial emissions, should also receive attention in addition to the control of vehicle-related emissions in Shanghai. The chemical removal of VOCs during the transport from emissions to the receptor site had a large impact on the apportionment results. Generally, the overestimation of vehicular contributions would occur when the VOC reaction rate constant with OH radicals(k OH) was larger than that of the vehicular indicator, while for species with smaller k OH than the vehicular indicator, the vehicular contribution would be underestimated by the method of characteristic ratios.
Hongli WangQian WangJianmin ChenChanghong ChenCheng HuangLiping QiaoShengrong LouJun Lu
To understand the composition and major sources of aerosol particles in Lhasa City on the Tibetan Plateau (TP), individual particles were collected from 2 February to 8 March, 2013 in Tibet University. The mean concentrations of both PM2.5 and PM10 during the sampling were 25.7 ± 21.7 and 57.2 ± 46.7 μg/m^3, respectively, much lower than those of other cities in East and South Asia, but higher than those in the remote region in TP like Nam Co, indicating minor urban pollution. Combining the observations with the meteorological parameters and back trajectory analysis, it was concluded that local sources controlled the pollution during the sampling. Transmission electron microscopy (TEM) combined with energydispersive X-ray spectra (EDS) was used to study 408 particles sampled on four days. Based on the EDS analysis, a total of 8 different particle categories were classified for all 408 particles, including Si-rich, Ca-rich, soot, K-rich, Fe-rich, Pb-rich, Al-rich and other particles. The dominant elements were Si, A1 and Ca, which were mainly attributed to mineral dust in the earth's crust such as feldspar and clay. Fe-, Pb-, K-, Al-rich particles and soot mainly originated from anthropogenic sources like firework combustion and biomass burning during the sampling. During the sampling, the pollution mainly came from mineral dust, while the celebration ceremony and religious ritual produced a large quantity of anthro- pogenic metal-bearing particles on 9 and 25 February 2013. Cement particles also had a minor influence. The data obtained in this study can be useful for developing pollution control strategies.
Bu DuoYunchen ZhangLingdong KongHongbo FuYunjie HuJianmin ChenLin LiA.Qiong