For any given symmetric measure μ on the closed unit disk D, we apply the Berezin transform to characterizing semi-commuting and commuting Toeplitz operators with bounded harmonic symbols on A2(D, dμ).
: We consider an approximation problem related to strongly irreducible operators, that is, does the direct sum of a strongly irreducible operator in B∞(Ω) and certain operator have a small compact perturbation which is a strongly irreducible operator in B∞(Ω)? In this paper, we prove that the direct sum of any strongly irreducible operator in B∞(Ω) and certain biquasitriangular operator have small compact perturbations which are strongly irreducible operators in B∞(Ω).
Two operators A, B ∈ B(H) are said to be strongly approximatively similar, denoted by A -sas B, if (i) given ε 〉 0, there exist Ki ∈ B(H) compact with ||Ki|| 〈ε(i = 1,2) such that A+K1 and B + K2 are similar; (ii) σ0(A) = σ0(B) and dim H(λ; A) = dim H(λ; B) for each λ ∈ σ0(A). In this paper, we prove the following result. Let S,T ∈ B(H) be quasitriangular satisfying: (i) σ(T) = σ(S) = σw(S) is connected and σe(S) = σlre(S); (ii) ρs-F(S) ∩ σ(S) consists of at most finite components and each component Ω satisfies that Ω = int Ω, where int Ω is the interior of Ω. Then, S -sas T if and only if S and T are essentially similar.