The near-infrared responsivity of a silicon photodetector employing the impurity photovoltaic (IPV) effect is investigated with a numerical method. The improvement of the responsivity can reach 0.358 A/W at a wavelength of about 1200 nm, and its corresponding quantum efficiency is 41.1%. The origin of the enhanced responsivity is attributed to the absorption of sub-bandgap photons, which results in the carrier transition from the impurity energy level to the conduction band. The results indicate that the IPV effect may provide a general approach to enhancing the responsivity of photodetectors.
Using β-FeSi2 as the bottom absorber of triple-junction thin-film solar cells is investigated by a numerical method for widening the long-wave spectral response. The presented results show that the β-FeSi2 subcell can contribute 0.273 V of open-circuit voltage to the a-Si/μc-Si/β-FeSi2 triple-junction thin-film solar cell. The optimized absorber thicknesses for a- Si, μ-Si, and/3-FeSi2 subcells are 260 nm, 900 nm, and 40 nm, respectively. In addition, the temperature coefficient of the conversion efficiency of the a-Si/μc-Si//3-FeSi2 cell is -0.308 %/K, whose absolute value is only greater than that of the a-Si subcell. This result indicates that the a-Si/μc-Si/β-FeSi2 triple-junction solar cell has a good temperature coefficient. As a result, using β-FeSi2 as the bottom absorber can improve the thin-film solar cell performance, and the a-Si/μc-Si/β-FeSi2 triple-junction solar cell is a promising structure configuration for improving the solar cell efficiency.