The convergence of several Galerkin-Petrov methods, including polynomial collocation and analytic element collocation methods of Toeplitz operators on Dirichlet space, is established. In particular, it is shown that such methods converge if the basis and test function own certain circular symmetry.
Properties of composition operators induced by analytic self-maps on the unit disk of the complex plane in Hardy-Orlicz spaces are discussed. Results are concerned about boundedness, invertibility, compactness, Fredholm operators and spectra of composition operators.
In the present paper, it is proved that the K0-group of a Toeplitz algebra on any connected domain is always isomorphic to the K0-group of the relative continuous function algebra. In addition, the cohomotopy groups of essential boundaries of some connected domains are computed, and the K0-groups of the continuous function algebras on these domains are also computed.