We discussed a class of p-Laplacian boundary problems on a bounded smooth domain, the nonlinearity is odd symmetric and limit subcritical growing at infinite. A sequence of critical values of the variational functional was constructed after the general- ized Palais-Smale condition was verified. We obtain that the problem possesses infinitely many solutions and corresponding energy levels of the functional pass to positive infinite. The result is a generalization of a similar problem in the case of subcritical.
This paper considers a two-phase free boundary problem for coupled system including one parabolic equation and two elliptic equations. The problem comes from the discussion of a growth model of self-maintaining protocell in multidimensional case. The local classical solution of the problem with free boundary (?) y = g(x,t) between two domains is being seeked. The local existence and uniqueness of the problem will be proved in multidimensional case.
In this paper a semilinear biharmonic problem involving nearly critical growth with Navier boundary condition is considered on an any bounded smooth domain. It is proved that positive solutions concentrate on a point in the domain, which is also a critical point of the Robin’s function corresponding to the Green’s function of biharmonic operator with the same boundary condition. Similar conclusion has been obtained in [6] under the condition that the domain is strictly convex.