The spectra of O_2 A-band(0.76 μm) and CO_2 near-infrared emissions(1.6 μm) are simulated by the SCIATRAN radiative transfer model(V3.1.23), and compared with those observed by GOSAT-FTS(Greenhouse gases Observing SATellite-Fourier Transform Spectrometer). Systematic deviations between the observed and simulated spectra are found to exist,especially for the O_2 A-band. The discrepancies are characterized by their mean differences averaged over the observed spectral ranges. A correction is applied to the observed GOSAT-FTS L1B(V141.141) spectra by scaling the spectral intensity measured by TANSO-FTS(Thermal and Near infrared Sensor for carbon Observation Fourier Transform Spectrometer) onboard GOSAT.The average columnar CO_2 concentrations(XCO_2) are retrieved from the observed and the corrected GOSAT-FTS spectra by using the SCIATRAN inversion algorithm. Compared with the GOSAT-FTS L2 XCO_2 data products retrieved from the observed spectra of GOSAT-FTS, the SCIATRAN retrievals from the corrected spectra show a much better agreement, with the relative error less than 1%. But the results of GOSAT TANSO-FTS(V161.160) show smaller residuals than GOSAT TANSO-FTS(V141.141) without mean residual correction. The results indicate that the mean residual correction would increase the precision of XCO_2 retrieval for spectra with systematic deviations.
LI YanFenZHANG ChunMinDAI HaiShanZHANG XingYingZHANG Peng