We studied pot cultivated Haloxylon ammodendron's growth, physiological changes and drought resistance under NaC1, H2SiO3, and NaCl+H2SiO3 treatments. Results show that 0.3 g/kg NaC1, 0.2 g/kg HzSiO3 or 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatments can effectively promote growth and improve the drought resistance of/-L, ammodendron. Compared with that without NaCI treatment, H. ammodendron's height, crown diameter and fresh weight increased by 42%, 91% and 62% respectively under 0.3 g/kg NaC1 treatment, and its main stem diameter, main root diameter and main root length increased by 40%, 39% and 23%, respectively. Compared with that without H2SiO3 treatments, H. ammodendron's height, crown diameter and flesh weight increased by 36%, 45% and 27% respectively under 0.2 g/kg HeSiO3 treatment, and its main stem diameter, main root diameter and main root length increased by 23%, 23% and 20%, respectively. Compared with that under 0.3 g/kg NaC1 treatment, H. ammodendron's height, crown diameter and fresh weight and main root length increased by 9%, 10%, 17% and 12% respectively under 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatment. Compared with that under 0.1 g/kg H2SiO3 treatment, H. ammodendron's height, crown diame- ter and fresh weight increased by 28%, 76% and 68% respectively under 0.3 g/kg NaCI+0.1 g/kg H2SiO3 treatment, and its main stem diameter, main root diameter and main root length increased by 30%, 32% and 27%, respectively. This suggests that moder- ate levels of NaCI+H2SiO3 interaction can effectively promote growth and improve drought resistance of/-L, ammodendron than separate applications of NaC1 or H2SiO3.
JianJun KangSuoMin WangMing ZhaoGuangYu LiZiHui Yang