Coupled-plate structures are widely used in the practical engineering such as aeronautical,civil and naval engineering etc.Limited works can be found on the vibration of the coupled-plate structure due to the increased mathematical complexity compared with the single plate structure.In order to study analytically the vibration characteristics and power transmission of the coupled-plate structure,an analytical model consisting of three coupled plates elastically restrained along boundary edges and elastically coupled with arbitrary angle is considered,in which four groups of springs are distributed consistently along each edge of the model to simulate the transverse shearing forces,bending moments,in-plane longitudinal forces and in-plane shearing forces separately.With elastic coupling condition and general boundary condition of both flexural and in-plane vibrations taken into account by setting the stiffness of corresponding springs,the double Fourier series solution to the dynamic response of the structure was obtained by employing the Rayleigh-Ritz method.In order to validate the model,the natural frequency and velocity response of the model are firstly checked against results published in literatures and the ANSYS data,and good agreement was observed.Then,numerical simulation of the effects of several relevant parameters on the vibration characteristics and power transmission of the coupled structure were performed,including boundary conditions,coupling conditions,coupling angle,and location of the external forces.Vibration and energy transmission behaviors were analyzed numerically.The results show that the power transmission can be significantly influenced by the boundary restraints and the location of excitation.When the excitation is located at the central symmetry point of the model,the energy flow shows a symmetrical distribution.Once the location deviates from the central symmetry point,the power circumfluence occurs and the vortex energy field is formed at high frequency.
An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.
This paper presents an analytical study on the influence of edge restraining stiffness on the transverse vibrations of rectangular plate structure. An improved Fourier series method was employed to analyze the transverse vibration of plate structure with general elastically restrained boundary conditions. A linear combination of a double Fourier series and eight auxiliary terms was sought as the admissible function of the flexural displacement of the plate, each term being a combination of a polynomial function and a single cosine series expansion. The auxiliary terms were introduced to ensure and improve the smoothness of the original displacement function and its derivatives at the boundaries. Several numerical examples were given to demonstrate the validity and accuracy of the current solution. The influences of translational and rotational stiffness on the natural frequencies and mode shapes of plate were analyzed by numerical results. The results show that the translational stiffness has bigger influence on the natural frequencies than the rotational stiffness. It is generally well known that little change of the rotational stiffness has little influence on the mode shapes of plate. However, the current work shows that a very little change of rotational stiffness value may lead to a large change of the mode shapes of a square plate structure.
A numerical and experimental study was presented on active control of structurally radiated sound from an elastic cylindrical shell.An analytical model was developed for the active structural acoustic control (ASAC) of the cylindrical shell.Both global and local control strategies were considered.The optimal control forces corresponding to each control strategy were obtained by using the linear quadratic optimal control theory.Numerical simulations were performed to examine and analyze the control performance under different control strategies.The results show that global sound attenuation of the cylindrical shell at resonance frequencies can be achieved by using point force as the control input of the ASAC system.Better control performance can be obtained under the control strategy of minimization of the radiated sound power.However,control spillover may occur at off-resonance frequencies with the control strategy of structural kinetic energy minimization in terms of the radiated sound power.Considerable levels of global sound attenuation can also be achieved in the on-resonance cases with the local control strategy,i.e.,minimization of the mean-square velocity of finite discrete locations.An ASAC experiment using an FXLMS algorithm was implemented,agreement was observed between the numerical and experimental results,and successful attenuation of structural vibration and radiated sound was achieved.