The effect of tempering temperature on the microstructure and corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel was investigated using transmission electron microscopy, atomic force microscopy, X-ray diffraction, and electrochemical tests. The microstructures of the ultra-high-strength martensitic stainless steel consisted of some retained austenite and lath/plant martensite with the carbides distributed within the matrix and at the grain boundaries. Tempering of the steel for 4 h at various temperatures resulted in various carbide grain sizes and different amounts of the retained austenite. The results showed that larger carbide grains led to diminished corrosion resistance, whereas larger amounts of the retained austenite resulted in improved corrosion resistance. The steels exhibited good corrosion resistance in 0.017 mol/L NaCl solution and exhibited pitting corrosion in 0.17 mol/L Na Cl solution. The martensite and prior austenite crystal boundaries dissolved in solution with pH 1.
The stress corrosion cracking( SCC) behavior of PH13-8Mo precipitation hardening stainless steel( PHSS) in neutral NaCl solutions was investigated through slow-strain-rate tensile( SSRT) test at various applied potentials. Fracture morphology,elongation ratio,and percentage reduction of area were measured to evaluate the SCC susceptibility. A critical concentration of 1. 0 mol / L neutral NaCl existed for SCC of PH13-8Mo steel. Significant SCC emerged when the applied potential was more negative than -0. 15 VSCE,and the SCC behavior was controlled by an anodic dissolution( AD) process.When the applied potential was lower than -0. 55 VSCE,an obvious hydrogen-fracture morphology was observed,which indicated that the SCC behavior was controlled by hydrogen-induced cracking( HIC).Between -0. 15 and -0. 35 VSCE,the applied potential exceeded the equilibrium hydrogen evolution potential in neutral NaCl solutions and the crack tips were of electrochemical origin in the anodic region; thus,the SCC process was dominated by the AD mechanism.
Qiang YuChao-fang DongJian-xiong LiangZhen-bao LiuKui XiaoXiao-gang Li
The effects of Cl ion concentration and pH values on the corrosion behavior of Cr12Ni3Co12Mo4W ultra-high-strength martensitic stainless steel(UHSMSS) were investigated by a series of electrochemical tests combined with observations by stereology microscopy and scanning electron microscopy. A critical Cl- ion concentration was found to exist(approximately 0.1wt%), above which pitting occurred. The pitting potential decreased with increasing Cl- ion concentration. A UHSMSS specimen tempered at 600°C exhibited a better pitting corrosion resistance than the one tempered at 400°C. The corrosion current density and passive current density of the UHSMSS tempered at 600°C decreased with increasing pH values of the corrosion solution. The pits developed a shallower dish geometry with increasing polarization potential. A lacy cover on the pits of the UHSMSS tempered at 400°C accelerated pitting, whereas corrosion products deposited in the pits of the UHSMSS tempered at 600°C hindered pitting.