A 3D bounding surface model is established for rockfill materials,which can be applied to appropriately predict the deformation and the stabilization of rockfill dams.Firstly,an associated plastic flow rule for rockfill materials is investigated based on the elaborate data from the large-style triaxial compression tests and the true triaxial tests.Secondly,the constitutive equations of the 3D bounding surface model are established by several steps.These steps include the bounding surface incorporating the general nonlinear strength criterion,stress-dilatancy equations,the evolution of the bounding surface and the bounding surface plasticity.Finally,the 3D bounding surface model is used to predict the mechanical behaviors of rockfill materials from the large-style triaxial compression tests and the true triaxial tests.Consequently,the proposed 3D bounding surface model can well capture such behaviors of rockfill materials as the strain hardening,the post-peak strain softening,and the volumetric strain contraction and expansion in both two-and three-dimensional stress spaces.
The particle breakage during specimen compaction had more significant influence on the position of the breakage critical-state line(BCSL)of Tacheng rockfill material(TRM)in the e-lnp’plane than the particle breakage during shearing,based on the large-scale triaxial compression tests on TRM in a wide range of densities and pressures.The state-dependent dilatancy and the plastic modulus were correlated to the breakage index,based on the formulations of the BCSL of TRM in the e-lnp’plane.The state-dependent model considering particle breakage was proposed for TRM within the framework of the generalized plasticity theory.The proposed model contained fourteen material constants.The test data of TRM from Group A were adopted to determine these material constants,while the test data from Group B were used independently to validate the model predictive capacity.The comparisons between model simulations and test data illustrated that the model with consideration of particle breakage could well represent the stress-strain behaviors of TRM,e.g.,the strain hardening and volumetric contraction behaviors at a loose state and the strain softening and volumetric expansion behaviors at a dense state,and also the particle breakage behaviors of TRM.
Rockfill material is widely used for construction of high rockfill dam due to its facility,economical cost,high strength and effective aseismatic property.It is provoked profoundly to propose a suitable constitutive model for a better application of this material.The dilatancy equation of rockfill material plays a significant role in the constitutive model.For the sake of simplicity,a dilatancy equation is established by the linear least square method on the basis of the rearranged data of rockfill material in the true triaxial tests.Based on the fact that the rearranged data at different initial confining pressures are aligned in a narrow band,the dilatancy behavior of rockfill material is independent of the initial confining pressure.However,different from the initial confining pressure,both the intermediate principal stress ratio and the specimen density exhibit a remarkable influence on the dilatancy behaviors of rockfill material.Furthermore,the predictions of the proposed dilatancy equation are in a good agreement with the rearranged test data of rockfill material at different specimen densities and stress paths.
XIAO Yang 1,2,LIU HanLong 1,2,ZHU JunGao 1,2 & SHI WeiCheng 1,3 1 Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,Nanjing 210098,China
The mechanical behaviors of the interface between coarse-grained soil and concrete were investigated by simple shear tests under condition of mixed soil slurry (bentonite mixed with cement grout).For comparison,the interfaces both without slurry and with bentonite slurry were analyzed.The experimental results show that different slurries exert much influence on the strength and deformation of soil/structure interface.Under mixed soil slurry,strain softening and shear dilatation are observed,while shear dilatation appears under the small normal stress of the interface without slurry,and shear contraction is significant under the condition of the bentonite slurry.The thickness of the interface was determined by analyzing the disturbed height of the sample with both simple shear test and particle flow code (PFC).An elasto-plastic constitutive model incorporating strain softening and dilatancy for thin layer element of interface was formulated in the framework of generalized potential theory.The relation curves of shear stress and shear strain,as well as the relation curves of normal strain and shear strain,were fitted by a piecewise function composed by hyperbolic functions and resembling normal functions.The entire model parameters can be identified by tests.The new model is verified by comparing the measured data of indoor cut-off wall model tests with the predictions from finite element method (FEM).The FEM results indicate that the stress of wall calculated by using Goodman element is too large,and the maximum deviation between the test data and prediction is about 45%.While the prediction from the proposed model is close to the measured data,and the error is generally less than 10%.
A new double-yield-sarface (DYS) model was developed to characterize the strength and deformation behaviors of coarse granular materials (CGMs). Two kinds of deformation mechanisms, including the shear and compressive plastic deformation, were taken into account in this model, These two deformation mechanisms were described by the shear and compressive yield functions, respectively. The Lode angle dependent formulations of proposed model were deduced by incorporating a 3D nonlinear unified failure criterion. Some comparisons were presented between the numerical predictions of proposed model and test data of true triaxial tests on the modeled rockfills. The model predictions are in good agreement with the test data and capture the strain hardening and plastic volumetric dilation of CGMs. These findings verify the reasonability of current DYS model, and indicate that this model is well suited to reproduce the stress-strain-volume change behavior of CGMs in general.
A unified nonlinear strength criterion(i.e UNS criterion) is proposed,for the sake of versatility,to capture the complex strength behaviors of frictional materials in geotechnical field.It covers wide ranges on the meridian and octahedral planes to describe nonlinear strength behaviors of soils.The Modified Cam-Clay model,incorporating the unified nonlinear strength criterion,is employed as an example to derive working mathematical equations and to illustrate yielding surfaces in three-dimensional stress space for improving the model's predictive capability.The unified nonlinear strength criterion,demonstrated here,is capable of capturing the experimental results of different types of soils on the meridian and octahedral planes.In addition,the revised model,based on this unified nonlinear strength criterion,though very simple,is versatile to predict the true triaxial test results from literature when considering the influences of the intermediate principal stress on strength and deformation under complex stress conditions.