The adsorption of hydrogen molecules on titanium-decorated (Ti-decorated) single-layer and bilayer graphenes is studied using density functional theory (DFT) with the relativistic effect. Both the local density approximation (LDA) and the generalized gradient approximation (GGA) are used for obtaining the region of the adsorption energy of H2 molecules on Ti-decorated graphene. We find that a graphene layer with titanium (Ti) atoms adsorbed on both sides can store hydrogen up to 9.51 wt% with average adsorption energy in a range from -0.170 eV to 0.518 eV. Based on the adsorption energy criterion, we find that chemisorption is predominant for H2 molecules when the concentration of H2 molecules absorbed is low while physisorption is predominant when the concentration is high. The computation results for the bilayer graphene decorated with Ti atoms show that the lower carbon layer makes no contribution to hydrogen adsorption.
In the paper we extend the Multiple-Relaxation-Time (MRT) Lattice Boltzmann (LB) model pro- posed in [Europhys. Lctt., 2010, 90: 54003] so that it is suitable also for incompressible flows. To decrease tile artificial oscillations, the convection term is discretized by the flux linfiter scheme with splitting technique. A new model is validated by some well-known benchmark tests, including Rie- mann problem and Couette flow, and satisfying agreements are obtained between the sinmlation results and ana.lytical ones. In order to show the merit of LB model over traditional methods, the non-equilibrium characteristics of system are solved. The simulation results are consistent with the physical analysis.