The variations of grain cadmiun(Cd) concentrations, translocation factors(TFs) of Cd from roots to shoots/grains of six rice cultivars, characterized with different Cd-sensitivities in polluted soil were studied, the selected rice cultivars were Xiangzao 17(R1), Jiayu 211(R2), Xiangzao 42(R3), Zhuliangyou 312(R4), Zhuliangyou 611(R5), and Jinyou 463(R6), respectively. The Cd subcellular distribution and Cd binding characteristics on subcellular fractions of rice root cell wall(CW) were further investigated. The results showed that the rice grain Cd contents varied significantly, with a maximum variation of 47.0% among the cultivars, the largest grain Cd content was observed with cultivar R1(Cd-sensitivity cultivar) and the smallest with R5(Cd-tolerance cultivar). The translocation factors of Cd from roots to shoots(TF_(shoot)) and roots to grains(TF_(grain)) varied greatly among the cultivars. In general, the TFgrain of the cultivars followed the order of R1〉R2〉R3〉R4〉 R6-R5. The Cd concentration(mg kg^(–1) FW) in the fraction of root CW, the fraction of cell wall removing pectin(CW-P) and the fraction of cell wall removing pectin and hemicellulose(CW-P-HC) of the cultivars generally followed the order of CW-P〉CW〉CWP-HC; the ratios of Cd concentration(mg kg–1 FW) in the fraction of CW-P to that of CW were mostly more than 1.10, while the ratios of Cd concentration in the fraction of CW-P-HC to that of CW were mostly less than 0.60, indicating that Cd was mainly stored in the hemicellulose of the root CW. The ratios of Cd of CW-P-HC to CW generally followed the descending order of R1~R2〉R3〉R4〉R5~R6 for the cultivars, which implied that hemicellulose is probably the main subcellular pool for transferring Cd into rice grain, and it restrains the translocation of Cd from shoot to the grain, especially for the Cd-tolerance cultivars(R5 and R6), the compartmentation of more Cd in hemicellulose in root CW is probably
LIU BinCHEN LiCHEN Shi-baoLI NingZHENG HanJIN KePANG Huan-chengMA Yi-bing
Lead (Pb) contamination has often been recorded in Chinese field soils. In recent years, efforts have been made to inves- tigate Pb toxicity thresholds in soils with plant growth and microbial assays. However, the influence of soil properties on Pb toxicity impacts on soil microbial processes is poorly understood. In this study ten soils with different properties were collected in China to investigate the relationships between thresholds of Pb toxicity to soil microbes and soil properties. The effect of soil leaching on Pb toxicity was also investigated to determine the possible influence of added anions on Pb toxicity during dose-response tests. Toxicity was inferred by measuring substrate-induced nitrification in leached and non-leached soils after Pb addition. We found that soil microbe Pb toxicity thresholds (ECx, x=10, 50) differed significantly between the soils; the 10% inhibition ratio values (ECI0) ranged from 86 to 218 mg kg-1 in non-leached soils and from 101 to 313 mg kg in leached soils. The 50% inhibition ratio values (EC50) ranged from 403 to 969 mg kg^-1 in non-leached soils and from 494 to 1 603 mg kg^-1 in leached soils. Soil leaching increased EC50 and EC50 values by an average leaching factor (LF) of 1.46 and 1.33, respectively. Stepwise multiple regression models predicting Pb toxicity to soil microbes were developed based on ECx and soil properties. Based on these models, soil pH and organic carbon are the most important soil properties af- fecting Pb toxicity thresholds (R2〉0.60). The quantitative relationship between Pb toxicity and soil properties will be helpful for developing soil-specific guidance on Pb toxicity thresholds in Chinese field soils.
Following rapid social and economic development over the past several decades, soil pollution by heavy metals(HMs) has been both serious and widespread in China. The Soil Environmental Quality Standards(SEQSs) in China(GB 15618-1995) have been introduced to encourage and enforce sustainable soil HM management. However, in recent years, HM contents in soils have frequently been found to exceed their associated standard values, while the crops growing on them might still meet regulatory standards, and vice versa. There is thus growing awareness that GB 15618-1995 does not effectively regulate current soil HM pollution, as it has encountered bottlenecks, and disappointing outcomes caused by poor execution along with deficiencies and gaps in the policies. However, due to the deficiency of scientific research about relationships between soil HM concentrations and their ecological or human health effects, the development of SEQSs in China is still greatly restricted. This paper discusses international SEQSs of HMs as well their development in China over time, then examines current Chinese SEQSs to demonstrate their potential regulatory deficiencies by referring to international SEQSs. The corresponding legislative policies are described, and scientific information or responses are outlined for maintaining soil environmental quality. China’s experience has shown that policy and science can be linked to work in tandem to better understand and manage soil quality issues.
It is imperative to derive an appropriate cadmium (Cd) health risk toxicity threshold for paddy soils to ensure the Cd con-centration of rice grains meet the food safety standard. In this study, 20 rice cultivars from the main rice producing areas in China were selected, and a pot-experiment was conducted to investigate transformation of Cd in paddy soil-rice system with 0 (CK), 0.3 mg kg–1 (T1) and 0.6 mg kg–1 (T2) Cd treatments in greenhouse. The results showed that Cd concentrations of rice grains existed signiifcant difference (P<0.05) in 20 rice cultivars under the same Cd level in soil. The Cd concentrations of rice grains of the CK, T1 and T2 treatments were in the range of 0.143–0.202, 0.128–0.458 and 0.332–0.806 mg kg–1, respectively. Marked differences of the ratios of Cd concentration for soil to rice grain (BCFs) and transfer factors (TFs, root to grain and straw to grain) among the tested cultivars were observed in this study. The bioconcentration factors (BCFgrain) and TFs of the 20 rice cultivars were 0.300–1.112 and 0.342–0.817, respectively. The TFs of Cd from straw to grain ranged from 0.366 to 1.71, with signiifcant differences among these 20 rice cultivars. The bioconcentration factors (BCFgrain) and TFs among the 20 rice cultivars ranged from 0.300–1.112 and 0.342–0.817, respectively. The species-sensitivity distribu-tion (SSD) of Cd sensitivity of the rice species could be iftted wel with Burr-III (R2=0.987) based on the data of BCFs. The toxicity threshold of Cd derived from SSD for the paddy soil was 0.507 mg kg–1 in the present study.
SONG Wen-enCHEN Shi-baoLIU Ji-fangCHEN LiSONG Ning-ningLI NingLIU Bin