Different scales of structural data reveal a complex deformation history of ultrahigh- pressure (UHP) rocks exposed in the Weihai-Rongcbeng area, NE Sulu (northern Jiangsu-eastern Shandong), eastern China. Excluding pre-UHP deformations, at least five major sequential deformational stages (D1-Ds) are recognized. The first deformation (DO produced a weak foliation and lineation in massive eclogites. The foliated eclogite with a dominant foliation containing a stretching and mineral lineation was developed during the I)2 deformation. Both the D1 and D2 deformations occurred under UHP metamorphic conditions, and are well preserved in the eclogite bodies. D3 structures which developed shortly after the formation of granulite/amphibolite facies symplectites are characterized by imbricated associations marked by a regional, steeply dipping foliation, compositional layering, eclogite boudinage, isoclinal folds and reverse ductile shear zones. The D3 deformation was accompanied by decompressional partial melting. A regional, gently dipping amphibolite facies foliation and stretching lineation, low-angle detachments, and dome- and arc-shaped structures formed during the D4 deformation stage dominate to some degree the map pattern of the Weihai-Rongcbeng UHP domain. The last stage of deformation (Ds) gave rise to the final exhumation of the UHP rocks. Ds is characterized by development of brittle-dominated high-angle faulting associated with emplacement of large volmnes of undeformed granite plutons and dykes dated at 134-100 Ma. The deformational and metamorphic sequence followed by the UHP rocks in the Weihai-Rongcheng area is similar to that studied in the entire Dabie-Sulu UHP and HP metamorphic belts from microscopic to mapping scale. Based on structural data, combined with available petrographic, metamorphic and geochronological data, a speculative tectonic evolutionary model for the Dabie-Sulu UHP and IIP belts is proposed, involving continental subduction/collision between the Sino-Korean and Ya
A combined study of zircon U-Pb dating, Hf isotopes and trace elements has been carried out for granodioritic neosomes of migmatites from the Tianjingping area in northwestern Fujian Province. Zircons are characterized by zoning, higher Th/U ratios (mostly ≥0.1), HREE enrichment, and positive Ce and negative Eu anomalies, and show features similar to magmatic or anatectic zircons. Apparent 206Pb/238U ages for the zircons are 447±2 Ma (95% conf., MSWD = 0.88), corresponding to a Caledonian event. εHf(t) values are ?13.3 to ?9.7, indicating a crustal source. Two-stage Hf model ages are 1.7 to 1.9 Ga, suggesting that protolith of the migmates was probably formed in the Paleoproterozoic. The granodioritic neosomes have the characteristics of peraluminous calc-alkaline granite, and their REE patterns and trace elements spidergrams show features of middle to upper crustal rocks. Together with previous studies, we conclude that the protolith of the Cathaysia basement in the Tianjingping area was likely formed in the middle-late Paleoproterozoic and experienced partial melting during the Caledonian period. The recognition of Caledonian reworking of the Paleoproterozoic basement in the Cathaysia Block provides a new insight into the tectonic evolution of the Cathaysia Block in the Caledonian pe- riod and the interaction between the Cathaysia Block and the Yangtze Block.