For L10-FePt films with strong perpendicular anisotropy covered by arrays of hexagonal close-packed polystyrene spheres (PSSs), fine structures are observed in magneto-optical Kerr rotation spectra in the visible spectral range. The reflection minima are found to be located at the same wavelengths as the Kerr rotation peaks. The Kerr rotation enhancement is attributed to the excitation of both the surface plasmon polariton in the dielectric PSS/metal interface and the guide waves (guide mode) in the PSS array. The two-dimensional PSSs/SiO2/FePt system exhibiting a tunable magneto-optical Kerr effect and a high perpendicular magnetic anisotropy will be helpful for designing and fabricating magneto-optics devices.
A series of 30-nm-thick epitaxial NixCo1-x (002) alloy films are fabricated by DC magnetron sputtering. MgO (002) and SrTiO3 (002) single substrates are used for x 〉 0.5 and x 〈 0.5, respectively. The magnetocrystalline anisotropy of NixCO1-x (002) alloy films is studied in the entire composition region for 0 ≤ x ≤ 1.0. When x decreases, the cubic magnetic anisotropy constant K1 changes sign from negative to positive atx = 0.96 and becomes negative again atx = 0.79. It becomes more negative as x decreases from 0.79 to 0. The uniaxial anisotropy Ku is smaller than the K1 by a factor of two orders.
Tbx(Ni0.8Fe0.2)1-x films with x ≤ 0.14 are fabricated and the anomalous Hall effect is studied. The intrinsic anomalous Hall conductivity and the extrinsic one from the impurity and phonon induced scattering both increase with increasing x. The enhancement of the intrinsic anomalous Hall conductivity is ascribed to both the weak spin–orbit coupling enhancement and the Fermi level shift. The enhancement of the extrinsic term comes from the changes of both Fermi level and impurity distribution. In contrast, the in-plane and the out-of-plane uniaxial anisotropies in the Tb Ni Fe films change little with x. The enhancement of the Hall angle by Tb doping is helpful for practical applications of the Hall devices.