We study the slow particles in 160-AgBr collisions at 3.7A GeV in nuclear emulsion with the method of twodimensional factorial moments using the Hurst exponent. Our investigation reveals the power law behaviour, exhibited in self-affine analysis, better than that in self-similar analysis. This work shows a clear evidence of self-affine target fragmentation.
We have studied the spin-dependent electron transmission through a quantum well driven by both dipole-type and homogeneous oscillating fields. The numerical evaluations show that Dresselhaus spin-orbit coupling induces the splitting of asymmetric Fano-type resonance peaks in the conductivity, in which the dipole modulation and the homogeneous modulation are equivalent. Therefore, we predict that the dipole-type oscillation, which is more practical in the experimental setup, can be used to realize the tunable spin filters by adjusting the field oscillation-frequency and the amplitude as well.
We have investigated theoretically the field-driven electron-transport through a double-quantum-well semiconductor-heterostructure with spin-orbit coupling. The numerical results demonstrate that the transmission spectra are divided into two sets due to the bound-state level-splitting and each set contains two asymmetric resonance peaks which may be selectively suppressed by changing the difference in phase between two driving fields. When the phase difference changes from 0 to π, the dip of asymmetric resonance shifts from one side of resonance peak to the other side and the asymmetric Fano resonance degenerates into the symmetric Breit-Wigner resonance at a critical value of phase difference. Within a given range of incident electron energy, the spin polarization of transmission current is completely governed by the phase difference which may be used to realize the tunable spin filtering.