A convenient and highly enanfioselecfive method for assembly of functionalized 1,2,3,4,5-pentasubstituted tetrahydropyridines and piperidines was developed. This method relies on preparing the required enantiopure cyclic semi-acetals via an organocatalyzed Michael addition/cyclization cascade reaction of aldehydes and a-keto-α,β- unsaturated esters, and subsequent reductive amination/condensation with primary amines.
Saframycin A(SFM-A),a tetrahydroisoquinoline antibiotic isolated from Streptomyces lavendulae,shows potent anti-proliferation activities against a variety of tumor cell lines,and shares the core structure with ecteinascidin 743(ET-743),the anticancer drug for soft-tissue sarcoma.Characterization of the SFM-A biosynthetic gene cluster revealed three nonribosomal peptide synthetase genes and a series of genes encoding oxygenases.To investigate the function of sfmO2 gene,encoding a FAD-dependent monooxygenase/hydroxylase,we constructed the gene replacement mutant(△sfmO2) strain S.lavendulae TL2007 and the corresponding gene complementation mutant strain S.lavendulae TL2008.A novel compound,SFM-O,was isolated from the △sfmO2 replacement mutant strain and its structure was characterized by comparison to the HRMS and NMR spectra of SFM-A.These findings indicated that SfmO2 is responsible for the oxidation of ring A in the biosynthetic pathway of SFM-A,and the new compound SFM-O could be considered as an advanced intermediate in the semisynthesis of ET-743.
Saframycin A(SFM-A),a tetrahydroisoquinoline antibiotic isolated from Streptomyces lavendulae,shows potent anti-proliferation activities against a variety of tumor cell lines,and shares the core structure with ecteinascidin 743(ET-743),the anticancer drug for soft-tissue sarcoma.Characterization of the SFM-A biosynthetic gene cluster revealed three nonribosomal peptide synthetase genes and a series of genes encoding oxygenases.To investigate the function of sfmO2 gene,encoding a FAD-dependent monooxygenase/hydroxylase,we constructed the gene replacement mutant(△sfmO2) strain S.lavendulae TL2007 and the corresponding gene complementation mutant strain S.lavendulae TL2008.A novel compound,SFM-O,was isolated from the △sfmO2 replacement mutant strain and its structure was characterized by comparison to the HRMS and NMR spectra of SFM-A.These findings indicated that SfmO2 is responsible for the oxidation of ring A in the biosynthetic pathway of SFM-A,and the new compound SFM-O could be considered as an advanced intermediate in the semisynthesis of ET-743.