The authors show that the self-similar set for a finite family of contractive similitudes (similarities, i.e., |fi(x) - fi(y)| = αi|x - y|, x,y ∈ RN, where 0 < αi < 1) is uniformly perfect except the case that it is a singleton. As a corollary, it is proved that this self-similar set has positive Hausdorff dimension provided that it is not a singleton. And a lower bound of the upper box dimension of the uniformly perfect sets is given. Meanwhile the uniformly perfect set with Hausdorff measure zero in its Hausdorff dimension is given.
Let f1 and f2 be two linearly independent solutions of the differential equation f" + Af =0,where A is an entire function.Set E-f1f2.In this paper,we shall study the angular distribution of E and establish a relation between zero accumulation rays and Borel directions of E.Consequently we can obtain some results in the complex differential equation by using known results in angular distribution theory of meromorphic functions.
M. Fait, J. Krzyz and J. Zygmunt proved that a strongly starlike function of order α on the unit disk can be extended to a k-quasiconformal mapping with k ≤ sin(απ/2) on the whole complex plane C which fixes the point at infinity. An open question is whether such a function can be extended to a k-quasiconformal mapping with k 〈α to the whole plane C. In this paper we will give a negative approach to the question.
Let f(z) = e2πiθz(1+z/d)d,θ∈R\Q be a polynomial. Ifθis an irrational number of bounded type, it is easy to see that f(z) has a Siegel disk centered at 0. In this paper, we will show that the Hausdorff dimension of the Julia set of f(z) satisfies Dim(J(f))<2.
SHEN Liang LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
Two boundary value problems are investigated for an over-determined elliptic system with several complex variables in polydisc. Necessary and sufficient conditions for the existence of finitely many linearly independent solutions and finitely many solvability conditions are derived. Moreover, the boundary value problem for any number of complex variables is treated in a unified way and the essential difference between the case of one complex variable and that of several complex variables is revealed.
In this paper, we study the boundary dilatation of quasiconformal mappings in the unit disc. By using Strebel mapping by heights theory we show that a degenerating Hamilton sequence is determined by a quasisymmetric function.