Schizophrenia is a heterogeneous psychiatric disorder broadly accepted being caused by genetic and environmental factors. Although conventional genetic studies have identified some candidate genes for schizophrenia, low odds ratios and penetrance, and a lack of reproducibility have limited their explanatory power. Despite the major efforts made toward identifying environmental factors in schizophrenia, methodological limitations and inconsistent findings of epidemiological reports have obstructed attempts to identify exogenous causal factors. Epigenetic mechanisms, mediating between environment and genes, have recently been proposed to play an important role in the pathogenesis of schizophrenia. DNA methylation is the most stable and well-characterized epigenetic modification. In this paper, we briefly introduce DNA methylation mechanisms, genome-wide DNA methylation studies, and identify specific genomic methylation sites in individuals diagnosed with schizophrenia. The outline candidate genes such as Reelin and COMT, are also outlined before paying attention to the conundrum of recent researches.
Schizophrenia is a severe mental disorder characterized by impaired perception, delusions, thought disorder, abnormal emotion regulation, altered motor function, and impaired drive. The default mode network (DMN), since it was first proposed in 2001, has become a central research theme in neuropsychiatric disorders, including schizophrenia. In this review, first we define the DMN and describe its functional activity, functional and anatomical connectivity, heritability, and inverse correlation with the task positive network. Second, we review empirical studies of the anatomical and functional DMN, and anti-correlation between DMN and the task positive network in schizophrenia. Finally, we review preliminary evidence about the relationship between antipsychotic medications and regulation of the DMN, review the role of DMN as a treatment biomarker for this disease, and consider the DMN effects of individualized therapies for schizophrenia.
Dear Editor:Numerous magnetic resonance imaging(MRI)studies have demonstrated that patients with early-onset schizophrenia(EOS)have widespread structural abnormalities in the cortical gray matter[1],suggesting that neurobiological processes play a central role in the structural abnormalities underlying the pathophysiology of schizophrenia[2].In addition,volumetric abnormalities have been used to identify individuals at risk of mental states of
Mitochondrial dysfunction has been widely reported in schizophrenia patients. To dissect the matrilineal structure of Han Chinese with or without schizophrenia and to decipher the maternal influence and evolutionary history of schizophrenia, a total of 1212 schizophrenia patients and 1005 matched healthy controls, all of Han Chinese origin, were recruited in Hunan Province, China. We classified haplogroup for each individual based on mitochondrial DNA (mtDNA) sequence variations and compared the haplogroup distribution pattern between cases and controls. Haplogroup B5a presented a higher frequency in cases than in controls (P = 0.02, OR = 1.67, 95% CI = [1.09, 2.56]), and this result could be confirmed by permutation analysis. Age estimation of haplogroup B5a in cases revealed a much younger age than that of controls, which was coincident with the Northern Hemisphere deglaciation at the end of the Last Glacial Maximum. Analysis of complete mtDNA in five patients belonging to haplogroup B5a showed that this background effect might be caused by haplogroup- defining variants m.8584G〉A and m.10398A〉G. Our results showed that matrilineal risk factor for schizophrenia had an ancient origin and might acquire a predisposing effect on schizophrenia due to the environment change and/or orchestration with other nuclear genetic factors appeared recently in human evolutionary history.
Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive.We implemented whole-genome sequencing(WGS) analysis of 8 families with monozygotic(MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations(DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs(including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes(p.V24689 I mutation in TTN, p.S2506 T mutation in GCN1L1, IVS3+1G > T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function(LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations(CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size.