The air quality model system RAMS (Regional Atmospheric Modeling System)-CMAQ (Models-3 Com- munity Multi-scale Air Quality) coupled with an aerosol optical/radiative module was applied to investigate the impact of different aerosol mixing states (i.e., externally mixed, half externally and half internally mixed, and internally mixed) oil radiative forcing in East Asia. The simulation results show that the aerosol optical depth (AOD) generally increased when the aerosol mixing state changed from externally mixed to internally mixed, while the single scattering albedo (SSA) decreased. Therefore, the scattering and absorption proper- ties of aerosols can be significantly affected by the change of aerosol mixing states. Comparison of simulated and observed SSAs at five AERONET (Aerosol Robotic Network) sites suggests that SSA could be better estimated by considering aerosol particles to be internally mixed. Model analysis indicates that the impact of aerosol mixing state upon aerosol direct radiative forcing (DRF) is complex. Generally, the cooling effect of aerosols over East Asia are enhanced in the northern part of East Asia (Northern China, Korean peninsula, and the surrounding area of Japan) and are reduced in the southern part of East. Asia (Sichuan Basin and Southeast China) by internal mixing process, and the variation range can reach +5 W m 2. The analysis shows that the internal mixing between inorganic salt and dust is likely the main reason that the cooling effect strengthens. Conversely, the internal nfixture of anthropogenic aerosols, including sulfate, nitrate, ammonium, black carbon, and organic carbon, could obviously weaken the cooling effect.
The geographical and seasonal characteristics in nitrate aerosol and its direct radiative forcing over East Asia are analyzed by using the air quality modeling system RAMS-CMAQ coupled with an aerosol optical properties/radiative transfer module. For evaluating the model performance, nitrate ion concentration in precipitation, and mixing ratios of PMl0, and some gas precursors of aerosol during the whole year of 2007 are compared against surface observations at 17 stations located in Japan, Korea, and China, and the satellite retrieved NO2 columns, The comparison shows that the simulated values are generally in good agreement with the observed ones. Simulated monthly averaged values are mostly within a factor of 2 of the measurements at the observation stations. The distribution patterns of NO2 from simulation and satellite measurement are also similar with each other. Analysis of the distribution features of monthly and yearly averaged mass concentration and direct radiative forcing (DRF) of nitrate indicates that the nitrate aerosol could reach about 25-30% of the total aerosol mass concentration and DRF in Sichuan Basin, Southeast China, and East China where the high mass burden of all major aerosols concentrated. The highest mass concentration and strongest DRF of nitrate could exceed 40 μg/m^3 and -5 Wire2, respectively. It also indicates that other aerosol species, such as carbonaceous and mineral particles, could obviously influence the nitrate DRF for they are often internally mixed with each other.