A field experiment with a split-plot design was carried out at Dongbeiwang Farm in Beijing Municipality to establish reliable N fertilizer recommendation indices for summer maize (Zea mays L.) in northern China using the soil Nmin (mineral N) test as well as the plant nitrate and SPAD (portable chlorophyll meter readings) tests. The results showed that Nmin sollwert (NS) 60 kg N ha-1 at the third leaf stage and N rate of 40 to 120 kg N ha-1 at the tenth leaf stage could meet the N requirement of summer maiz…
Specific management of water regimes, soil and N in China might play an important role in regulating N2O and CH4 emissions in rice fields. Nitrous oxide and methane emissions from alternate non-flooded/flooded paddies were monitored simultaneously during a 516-day incubation with lysimeter experiments. Two N sources (15N-(NH4)2SO4 and 15N-labeled milk vetch) were applied to two contrasting paddies: one derived from Xiashu loess (Loess) and one from Quaternary red clay (Clay). Both N2O and CH4 emissions were significantly higher in soil Clay than in soil Loess during the flooded period. For both soil, N2O emissions peaked at the transition periods shortly after the beginning of the flooded and non-flooded seasons. Soil type affected N2O emission patterns. In soil Clay, the emission peak during the transition period from non-flooded to flooded conditions was much higher than the peak during the transition period from flooded to non-flooded conditions. In soil Loess, the emission peak during the transition period from flooded to non-flooded conditions was obviously higher than the peak during the transition period from non-flooded to flooded conditions except for milk vetch treatment. Soil type also had a significant effect on CH4 emissions during the flooded season, over which the weighted average flux was 111 mg C m-2 h-1 and 2.2 mg C m-2 h-1 from Clay and Loess, respectively. Results indicated that it was the transition in the water regime that dominated N2O emissions while it was the soil type that dominated CH4 emissions during the flooded season. Anaerobic oxidation of methane possibly existed in soil Loess during the flooded season.
In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.
To determine the optimal amount of nitrogen(N) fertilizer for achieving a sustainable rice production at the Taihu Lake region of China,two-year on-farm field experiments were performed at four sites using various N application rates.The results showed that 22%-30% of the applied N was recovered in crop and 7%-31% in soils at the rates of 100-350 kg N ha 1.Nitrogen losses increased with N application rates,from 44% of the applied fertilizer N at the rate of 100 kg N ha 1 to 69% of the N applied at 350 kg N ha 1.Ammonia volatilization and apparent denitrification were the main pathways of N losses.The N application rate of 300 kg N ha 1,which is commonly used by local farmers in the study region,was found to lead to a significant reduction in economic and environmental efficiency.Considering the cost for mitigating environmental pollution and the maximum net economic income,an application rate of 100-150 kg N ha 1 would be recommended.This recommended N application rate could greatly reduce N loss from 199 kg N ha 1 occurring at the N application rate of 300 kg N ha 1 to 80-110 kg N ha 1,with the rice grain yield still reaching 7 300-8 300 kg DW ha 1 in the meantime.
DENG Mei-HuaSHI Xiao-JunTIAN Yu-HuaYIN BinZHANG Shao-LinZHU Zhao-LiangS.D.KIMURA