Synthetic pyrethroids (SPs) are among the most common pesticides in current use, and so far, several SPs have been assessed for their potential estrogenicities by various methods. Previous studies have shown that the estrogenicities partly come from their metabolites. Although considerable information is available with respect to the metabolism and environmental degradation of SPs, little is known about the estrogenicities of the metabolites. In this study, permethrin (PM) and β-cypermethrin (CP), as well as their metabolites (3-phenoxybenzoic alcohol (PBCOH), 3-phenoxybenzaldehyde (PBCHO) and 3-phenoxybenzoic acid (PBCOOH) were evaluated for their estrogenic activities in the MCF-7 human breast carcinoma cell line. In the MCF-7 cell proliferation assay, PM and CP exhibited significant estrogenic activities at 10-7 mol/L, comparable to 17β-estradiol (E2) of 10-9 tool/L, with the relative proliferative effect ratios of 55.4% and 56.3%, respectively. The real-time quantitative polymerase chain reaction (qRT-PCR) results confirmed the estrogenicities of PM and CP with significant alteration of pS2 and ERα mRNA levels observed at 10-6 mol/L. For the three major metabolites, PBCOH and PBCOOH exhibited estrogenic activities in all assays, while no significant estrogenic responses was observed for PBCHO compared to the vehicle control. In particular, PBCOH had even slightly stronger estrogenic activity than its parent compounds, indicating that metabolism may be one of the reasons for the estrogenicities of the SPs. Given the widespread use of SPs, the toxicological effects of parent compounds and their metabolites should be taken into consideration in the risk assessment of SPs.
The wide use and wide-spectrum toxicity of synthetic pyrethroids (SPs) insecticides make them an emerging ecotoxicological concern. Some previous studies showed that SPs possessed cytotoxicity in some immune cells such as human lymphocytes and rat bone marrow. However, the cytotoxicity of SPs to macrophages, which are crucial to innate immunity, has not been explored. In the present report, we investigated a new pyrethroid insecticide, lambda-cyhalothrin (LCT), which may increase the generation of reactive oxygen species (ROS) and DNA damage levels and cause cytotoxicity in RAW 264.7 cells in dose- and time-dependent manners. The results for the first time implicated increased endogenous ROS and DNA damage as co-mediators of LCT-induced cytotoxicity in macrophages. Our results also suggested that macrophages were involved in synthetic pyrethroid-induced adverse immune effects. Considering the ubiquitous environmental presence of SPs, this study provided new information relative to the potential long-term physiological and immunological effects associated with chronic exposure to SPs. Hence, the potential immunotoxicity of SPs should be considered in assessing the safety of these compounds in sensitive environmental compartments.
Quan Zhang, Cui Wang, Liwei Sun, Ling Li, Meirong Zhao Research Center of Environmental Science, College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
With the increasing use of synthetic pyrethroids (SPs), the significance of ecological safety and health risk is an emerging concern, In this study, we evaluated the chronic aquatic toxicity of eis-bifenthrin (cis-BF) in Daphnia magna and its cytotoxicity in Chinese hamster ovary (CHO) cells as well as human cervical carcinoma (Hela) ceils. Chronic aquatic toxicity tests showed that cis-BF could significantly affect the reproduction of D. magna. The lowest observed effective concentration and the non-observed effective concentration of cis-BF to D. magna were 0.02 and 0.01 μg/L, respectively, and the chronic value was 0.014 μg/L. The intrinsic rate of natural increase was significantly decreased (p 〈 0.05) to 0.02 μg/L. The cytotoxicity assay demonstrated that cis-BF decreased cell viability in CHO and Hela cells in a concentration- and time-dependent manner. The IC50 values for Hela and CHO cells were 4.0 × 10^-5 and 3.2 × 10^-5 mol/L, respectively. Together, these results indicated that cis-BF induced chronic toxicity in both aquatic invertebrate animals and mammalian cells. These findings assist in understanding the impact of SPs on health and environmental safety. Considering the wide spectrum of SPs, a more comprehensive understanding of the negative effects is indispensible for planning future application and regulation of these pesticides.