In 2018,summer precipitation was above normal in North and Northwest China and below normal around the Yangtze River valley,due to an extremely strong East Asian summer monsoon(EASM).The atmospheric circulation anomalies in East Asia and key external forcing factors that influence the EASM in 2018 are explored in this paper.The results show that there existed an anomalous cyclonic circulation near the Philippines,while the western Pacific subtropical high was located more northward than its normal position.In the mid–high latitudes,a negative geopotential height anomaly center was found near the Ural Mountains,suppressing the blocking activity.Under such a circulation pattern,precipitation near the Yangtze River valley decreased because local divergence and subsidence intensified,whereas precipitation in northern China increased due to large amounts of water vapor transport by anomalously strong southerly winds.Further analyses reveal that the strong EASM circulation in 2018 might result from the joint influences of several external forcing factors.The weak La Ni?a event that started from October 2017,the positive North Atlantic Tripolar mode(NAT)in spring 2018,and the reduced snow cover over the Tibetan Plateau in winter 2017/18 all collaboratively contributed to formation of the cyclonic circulation anomaly near the Philippines,leading to the extremely strong EASM.Especially,the positive NAT and the reduced Tibetan snow cover may have caused the negative geopotential height anomaly near the Ural Mountains,in favor of a strong EASM.The above external factors and their reinforcing impacts on the EASM are further verified by two groups of similar historical cases.
In summer 2018,a total of 18 tropical cyclones(TCs)formed in the western North Pacific(WNP)and South China Sea(SCS),among which 8 TCs landed in China,ranking respectively the second and the first highest since 1951.Most of these TCs travelled northwest to northward,bringing in heavy rainfall and strong winds in eastern China and Japan.The present study investigates the impacts of decaying La Nina and intraseasonal oscillation(ISO)on the extremely active TCs over the WNP and SCS in summer 2018 by use of correlation and composite analyses.It is found that the La Nina episode from October 2017 to March 2018 led to above-normal sea surface temperature(SST)over central–western Pacific,lower sea level pressure and 500-hPa geopotential height over WNP,and abnormally strong convective activities over the western Pacific in summer 2018.These preceding oceanic thermal conditions and their effects on circulation anomalies are favorable to TC genesis in summer.Detailed examination reveals that the monsoon trough was located further north and east,inducing more TCs in northern and eastern WNP;and the more eastward WNP subtropical high as well as the significant wave train with a"-+-+"height anomaly pattern over the midlatitude Eurasia–North Pacific region facilitated the northwest to northward TC tracks.Further analyses reveal that two successively active periods of Madden–Julian Oscillation(MJO)occurred in summer 2018 and the boreal summer intraseasonal oscillation(BSISO)was also active over WNP,propagating northward significantly,corresponding to the more northward TC tracks.The MJO was stagnant over the Maritime Continent to western Pacific,leading to notably enhanced convection in the lower troposphere and divergence in the upper troposphere,conducive to TC occurrences.In a word,the extremely active TC activities over the WNP and SCS in summer 2018 are closely linked with the decaying La Nina,and the MJO and BSISO;their joint effects result in increased TC occurrences and the TC tracks being shifted more northwest t