This paper analyzes the complete lifecycle of super typhoons in 2016 in the western North Pacific(WNP) using the deviation angle variance technique(DAV-T). Based on the infrared images from Fengyun(FY) satellites, the DAV-T enables quantification of the axisymmetry of tropical cyclones(TCs) by using the DAV values; and thus, it helps improve the capability of TC intensity estimation. Case analyses of Super Typhoons Lionrock and Meranti were performed to explore the distribution characteristics of the DAV values at the various stages of TC evolution. The results show that the minimum DAV values(i.e., map minimum values: MMVs) gradually decreased and their locations constantly approached the circulation center with enhancement of the TC organization; however, when a ring or disk structure was formed around a TC, significant changes in MMV locations were no longer observed. Nonetheless,when large-scale non-closed deep convective cloud clusters appeared at the early stage or the dissipation stage of the typhoon, the axisymmetry of the TC was poor and the MMV locations tended to lie in the most convective region rather than in the TC circulation center. Overall, the MMVs and their locations, respectively, exhibited a strong correlation with the TC intensity and circulation center, and the correlation increased as the TCs became stronger. Combined with the China Meteorological Administration BestTrack dataset(CMA-BestTrack), statistical analysis of all research samples reveals that the correlation coefficient between the MMVs and maximum surface wind speeds(Vmax) was –0.80; the root mean square error(RMSE) of relative distance between the MMV locations and TC centers was 140.3 km; and especially, when the samples below the tropical depression(TD) intensity were removed, the RMSE of the relative distance decreased dramatically to 95.0 km. The value and location of the MMVs could be used as important indicators for estimating TC intensity and center.
Newtonian jerky dynamics is applied to inertial instability analysis to study the nonlinear features of atmospheric motion under the action of variable forces. Theoretical analysis of the Newtonian jerky function is used to clarify the criteria for inertial instability, including the influences of the meridional distributions of absolute vorticity (ζg) and planetary vorticity (the ζ effect). The results indicate that the meridional structure of absolute vorticity plays a fundamental role in the dynamic features of inertial motion. Including only the ζ effect (with the assumptionof constant ζg) does not change the instability criteria or the dynamic features of the flow, but combining the β effect with meridional variations of ζg introduces nonlinearities that significantly influence the instability criteria. Numerical analysis is used to derive time series of position, velocity, and acceleration under different sets of parameters, as well as their trajectories in phase space. The time evolution of kinematic variables indicates that a regular wave-like change in acceleration corresponds to steady wave-like variations in position and velocity, while a rapid growth in acceleration (caused by a rapid intensification in the force acting on ,the parcel) corresponds to track shifts and abrupt changes in direction. Stable limiting cases under the f- and f-plane approximations yield periodic wave-like solutions, while unstable limiting cases yield exponential growth in all variables. Perturbing the value of absolute vorticity at the initial position (ζ0) results in significant changes in the stability and dynamic features of the motion. Enhancement of the nonlinear term may cause chaotic behavior to emerge, suggesting a limit to the predictability of inertial motion.
Based on a successful simulation of Typhoon Haikui(2012) using WRF(Weather Research & Forecasting)model with the WSM6 microphysics scheme, a high-resolution model output is presented and analyzed in this study. To understand the cause of the average gridded rainfall stability and increases after Haikui's landfall, this research examines the fields of the physical terms as well as the vapor and condensate distributions and budgets, including their respective changes during the landing process. The environmental vapor supply following the typhoon landfall has no significant difference from that before the landfall. Although Haikui's secondary circulation weakens, this circulation is not conducive to typhoon rainfall stability or increases, although the amounts of the six kinds of water substances(vapor,cloud water, cloud ice, snow, rain, and graupel) increase in the outer region of the typhoon. This reallocation of water substances is essential to the maintenance of rainfall. The six kinds of water substances are classified as vapor, clouds(cloud water and ice) and precipitation(snow, rain, and graupel) to diagnose their budgets. This sorting reveals that the changes in the budgets of different kinds of water substances, caused by the reduced mixing ratios of snow and ice, the water consumption of clouds, and the transformation of graupel, induce increased concentrations of precipitation fallout,which occur closer to the ground after typhoon landfall. In addition, this pattern is an efficient way for Haikui's rainfall to remain stable after its landfall. Thus, the allocation and budget analyses of water substances are meaningful when forecasting the typhoon rainfall stability and increases after landfall.