Serious shaft lining failures often occur when shaft linings are constructed by passing them through the deep topsoil of Quaternary strata. This approach also leads to the formation of an aquifer at the bottom.Based on the theory of the additional stress which is the main reason for these failures, this study focuses on the treatment effect of underground continuous impervious curtain(UCIC) in terms of different factors, namely, the location, shape, range, and width, by using numerical simulation. Results show that the UCIC can reduce the stress concentration in the shaft lining formed in the bottom aquifer. The UCIC can also reinforce the shaft lining at different angles and can be applied in actual situations. The strength factors of the inner surface of the shaft lining increase after the UCIC are used. The material strength and width of the UCIC show an obvious effect on the stability of the shaft lining. Results proved that the UCIC could effectively strengthen the stability of the shaft lining when it was built in the aquifer or built in the aquifer and above and below the layer.
The strength of warm frozen soils in permafrost is fundamentally significant to estimate and predict the ground settlements from construction activities. A study was therefore initiated to assess the strength and its behaviors of undisturbed and reconstituted frozen soils at temperatures close to 0 ℃. A series of triaxial compression tests(TCT) were performed by using a developed testing apparatus and a matching specimen-preparation method. The confinement was applied from air pressure, the temperature in the specimen was maintained using two-end refrigeration, and multi-stage loading on a single specimen was adopted to determine the strength. The test results showed that the strength, both for the undisturbed and reconstituted frozen-soil specimens, was significantly dependent on the temperatures and independent of the applied confining pressures. Additionally, the strength of undisturbed frozen soils was about 1.6 times more than that for reconstituted frozen soils. These observations were closely associated with the structures existing between pore-ice and gravels with large diameters.
Energy and resources including coal, oil, and gas are in demand all over the world. Because these resources near the earth's surface have been exploited for many years, the extraction depth has increased.As mining shafts in the coal extraction process become deeper, especially in western China, an artificial freezing method is used and is concentrated in the fractured rock mass. The frost-heaving pressure(FHP)is directly related to the degree of damage of the fractured rock mass. This paper is focused on FHP during the freezing process, with emphasis on the frost-heaving phenomenon in engineering materials. A review of the frost phenomenon in the geotechnical engineering literature indicates that:(1) During the soil freezing process, the ice content that is influenced by unfrozen water and the freezing rate are the determining factors of FHP;(2) During the freezing process of rock and other porous media, the resulting cracks should be considered because the FHP may damage the crack structure;(3) The FHP in a joint rock mass is analyzed by the joint deformation in field and experimental tests and can be simulated by the equivalent expansion method including water migration and joint deformation.