Aggregate stability is a very important predictor of soil structure and strength, which influences soil erodibility. Several aggregate stability indices were selected erodibility of four soil properties from temperate for estimating interrill types with contrasting and subtropical regions of China. This study was conducted to investigate how closely the soil interrill erodibility factor in the Water Erosion Prediction Project (WEPP) model relates to soil aggregate stability. The mass fractal dimension (FD), geometric mean diameter (GMD), mean weight diameter (MWD), and aggregate stability index (ASI) of soil aggregates were calculated. A rainfall simulator with a drainable flume (3.0 m long × 1.0 m wide × 0.5 m deep) was used at four slope gradients (5°,10 °,15° and 20°), and four rainfall intensities (0.6, 1.1, 1.7 and 2.5 mm/min). Results indicated that the interriU erodibility (Ki) values were significantly correlated to the indices of ASI, MWD, GMD, and FD computed from the aggregate wet-sieve data. The Kihad a strong positive correlation with FD, as well as a strong negative correlation with ASI, GMD, and MWD. Soils with a higher aggregate stability and lower fractal dimension have smaller Ki values. Stable soils were characterized by a high percentage of large aggregates and the erodible soils by a high percentage of smaller aggregates. The correlation coefficients of Ki with ASI and GMD were greater than those with FD and MWD, implying that both the ASI and GMD may be better alternative parameters for empirically predicting the soil Ki factor. ASI and GMD are more reasonable in interrill soil erodibility estimation, compared with Ki calculation in original WEPP model equation. Results demonstrate the validation of soil aggregation characterization as an appropriate indicator of soil susceptibility to erosion in contrasting soil types in China.
The present study was conducted within the frame of the Sino-German project "Rehabilitation of degraded land ecosystems in the mountainous area of the Southern Shaanxi Province,China".The study deals with the assessment of the potential of oak coppices as well as the evaluation of the socioeconomic conditions in the Shangnan County.The ultimate objective of the study is to provide recommendations on the sustainable management of forest resources,which does not only aim to improve the environmental situation but also to satisfy the demands of the local rural residents.The study was based on 30 samples of oak coppices stands,which were randomly selected within an area of a size of 20 km × 20 km.In each selected stand,the mature stand and understory regeneration were investigated in depth.For the socio-economic survey,175 households from 11 villages were randomly selected.Results revealed that the stocking capacity of the cork oak coppices reaches 120 m3/ha in average at the older age classes(≥25 years) even after frequent timber harvest.High potential for productivity was indicated by the availability of sufficient vigorous individuals at different age classes.In addition,the understory regeneration was sufficient in density(19,000±133 individual/ha) and consisted of diverse valuable native-species(17 species within a survey area of 400 m2).The results of the assessment of the oak coppices provided possibilities for some practices that can be recommended towards sustainable management of such stands.On the other hand,results of the socioeconomic study showed a high degree of acceptance among the local inhabitants(79% of the total households) to change traditional land use,providing an enhancement of their economic situation.
王小兰Hany El KatebBernhard Felbermeier张平仓Reinhard Mosandl
Annual discharge and annual suspended sediment loads of Beipei Hydrological Station of the Jialing River catchment were analyzed to describe the trend of Jialing River over the last five decades (1956-2006). These loads were also analyzed to ascertain the influential factors associated with its variation with the help of Kendall's Tau-b correlation analysis and regression analysis. The results indicated that the Jialing River annual discharge showed no significant trend at >95% confidence level while the annual sediment load appeared to have a significant decrease trend over the last 50 years. A decrease in the annual sediment load was particularly apparent after the year 1985, at which a substantial shift in the sediment level occurred. This shift is attributed to the construction of numerous dams in 1980s. However, after the year of 1985, two periodical stages (1986-1991 and 1992-2006) with distinct sediment load and sediment-runoff ratio were identified. The period 1992-2006 is characterised by low sediment load, which is most probably due to the impact of large scale of soil and water conservation, which took place at the end of the 1980s. Last, models describing the relationship between the discharge and the sediment load, discharge and sediment-runoff ratio as well as between the sediment load and sediment-runoff ratio were constructed.