The trace fossil Zoophycos was enriched in the lower part of the Guadalupian Maokou Formation of Permian in Laibin, Guangxi of South China, and characterized by observable lamellae within its spreiten. Associated with these lamellae are the prolific coccus- and spirillum-shaped microbe fossils. These microbes morphologically identified are 0.4―3.0 μm in diameter or length. Molecular fossils, including normal alkanes (dominated by C18, without an odd-over-even predominance), acyclic isoprenoids (such as pristane (Pr) and phytane (Ph)), extended tricyclic terpanes, pentacyclic triterpanes, steranes, al-kylcyclohexanes, dibenzothiophenes, benzonaphthothiophenes, benzobisbenzothiophenes, were in-strumentally identified in the wackestone characterized by the occurrence of abundant Zoophycos (composite ichnofabric indices are 4) and crowded microbial fossils. The value of the Pr/Ph ratio is less than 1, indicative of a dysoxic condition. The identification of abundant sulfur compounds (the thio-phene series) related to the contribution of reductive sulfur favors the occurrence of sulphate-reducing bacteria. The association of abundant microbial colonies with microbial molecular fossils within the spreiten suggests that trace fossils Zoophycos would be a multifunctional garden carefully constructed by the Zoophycos-producer, where different microbial colonies were orderly and carefully planted and cultured in different minor lamellae within spreiten. Hence, it is proposed that the Zoophycos-producer symbiosed with microbial colonies on the mutual basis of food supply and the redox conditions.
GONG YiMingXU RanXIE ShuChengHUANG XianYuHU BinQI YongAnZHANG GuoCheng
Studies show positive shifts of inorganic and organic carbon isotope values (δ 13Ccarb and δ 13Ckerogen) from +0.43 (‰ V-PDB) to +3.54 (‰ V-PDB) and from ?29.38 (‰ V-PDB) to ?24.14 (‰ V-PDB), respectively, B* (Ba* = Ba/ (Al2O3 X 15%)) values from 0.015 to 0.144, TOC values from 0.02% to 0.21%, V/Cr values from 0.3 to 2.0, Sr/Ba values from 3.20 to 49.50 in the Late Devonian Frasnian Upper rhenana zone to the top linguiformis zone of the Yangdi sec-tion deposited in carbonate slope facies of Guilin, Guangxi, South China, which indicates that biomass, productivity, organic carbon burial and salinity increase and that oxygenation near the boundary between sediments and waters decreases from the Late Devonian Frasnian Upper rhenana zone to the top linguiformis zone. Abundance of molecular fossils increases and normal alkanes, isoprenoid hydrocarbon, terpanes and steranes are dominated from the Late Devonian Frasnian to the bottom of Famennian, which shows that the predecessors of molecular fossils of the Frasnian-Famennian (F-F) transition are dominated by marine phytoplankton, zooplankton and benthic bacteria with no photosynthesis. Therefore, it is considered that the F-F transitional mass extinction with a multistage, selection and global synchronizing was caused by bacte-rial-algal proliferating, continuing deterioration of the shallow marine ecoenvironment of the mid-dle-lower latitudes. A simple cause and effect chain can be expressed as: appearance of seed plants and multi-storied forests → enhanced chemical and biochemical weathering and pe-dogenesis → wide development of soils → increasing riverine nutrient fluxes in epicontinental sea → from superoligotrophic to eutrophic in epicontinental sea → proliferating of marine phyto-plankton and zooplankton → frequent red tide and anoxia → mass extinction of shallow marine organisms in the middle-lower latitudes. It is worth notice that the factor drawdown of atmos-pheric Pco2, climatic cooling and sea level falling caused by eutrophication,
GONG Yiming1,2, XU Ran1, TANG Zhongdao1, SI Yuanlan3 & LI Baohua4 1. Faculty of Earth Science and State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China