The reinforcement/matrix interfacial strength has been considered as the key factor when glass fiber reinforced polymer(GFRP) bar is mixed with concrete. In this paper, based on micromechanics, fourpoint bending numerical models with and without glass fiber of different interfacial strength have been set up to simulate the damage process of GFRP reinforced concrete beam. The results show that the higher the interfacial strength is, the higher the ultimate bearing capacity of beams, and the less the opening width and height of cracks will be reached. Furthermore, mixing of glass fibers has less influence on the damage process when the interfacial strength is weak, however, it can help to improve the ultimate bearing capacity of the beams, retard the expansion of cracks and improve the toughness when the interfacial strength is high.
By taking into consideration of meso-scopic level, four-point bending numerical model of different interfaces was established to analyze the effect of interracial strength on the bending properties of reinforced concrete beams with the diagrams of crack pattern, the load- step curve and the cumulative AE- loading step curve. The experimental result shows that the peak load, the cracking load and the stiffness before cracking increase with the interfacial strength. Furthermore, the specimen with strong interface presents high brittleness during the failure process, while both bearing capability and ductility could be found in the specimen with moderate interfacial strength.