A new method for three-dimensional simulation of the interaction between the gas and the solid around is developed.The effects of the gas on the thermal-mechanical behaviors within the surrounded solid are performed by replacing the internal gas with an equivalent solid in the modeling,which can make it convenient to simulate the thermal-mechanical coupling effects in the solid research objects with gases in them.The applied thermal expansion coefficient,Young's modulus and Poisson's ratio of the equivalent solid material are derived.A series of tests have been conducted;and the proposed equivalent solid method to simulate the gas effects is validated.
Based on the commercial computational software, a three-dimensional finite ele- ment model to simulate the thermo-mechanical behaviors in a nuclear fuel rod is established; By taking into consideration irradiation-swelling of the pellet and the irradiation damage effects in the cladding together with the coupling effects between the temperature field and the mechanical field, the user subroutines to define the special material performance and boundary conditions have been developed independently and validated. Three-dimensional numerical simulation of the thermo-mechanical coupling behaviors in a nuclear fuel rod is carried out, and the evolution rules of the important thermal and mechanical variables are obtained and analyzed. The research re- sults indicate that: (i) the fuel pellets will be in contact with the cladding at high burnup, which will induce a strong mechanical interaction between them; (2) the irradiation creep effect plays an important role in the mechanical behavior evolution in the nuclear fuel rod.
Xin GongYijie JiangShurong DingYongzhong HuoCanglong WangLei Yang