Ultrafine-grained commercial-purity aluminum(AA1070) sheets produced by four cycles of accumulative roll-bonding(ARB) without lubrication are subjected to annealing treatments in the temperature range from 250℃ to 400℃.Microstructures and microtextures in the surface and center regions of the ARBed and annealed sheets are measured by electron backscatter diffraction.The results show that annealing treatments at 325℃ or above lead to a reduction in the microstructure gradient but a significant through-thickness texture gradient different from that in the as-deformed state.The center region is featured by the development of a strong cube texture at the expense of rolling components.In the surface region,shear-type components are either enhanced or largely retained,showing a high persistency upon annealing.While the grain structures are restored predominantly by continuous recrystallization in the surface region,a mixture of continuous and discontinuous recrystallization is envisaged for the center region.
Some applications of crystal plasticity modeling in equal channel angular extrusion(ECAE) of face-centered cubic metals were highlighted.The results show that such simulations can elucidate the dependency of grain refinement efficiency on processing route and the directionality of substructure development,which cannot be explained by theories that consider only the macroscopic deformation behavior.They can also capture satisfactorily the orientation stability and texture evolution under various processing conditions.It is demonstrated that crystal plasticity models are useful tools in exploring the crystallographic nature of grain deformation and associated behavior that are overlooked or sometimes erroneously interpreted by existing phenomenological theories.