The microstructure and phase composition of as-cast Mg-9Er-6Y-xZn-0.6Zr (x=1, 2, 3, 4; normal mass fraction in %) alloys were investigated. In low Zn content, aside from the major second phase of Mg24(Er, Y, Zn)5, there are a few lamellar phases that grow parallel with each other from the grain boundaries to the grain interior. With Zn content increasing, the Mg24(Er, Y, Zn)5 phase decreases, but the Mg12Zn(Y, Er) phase and lamellar phases continuously increase. When Zn content reaches 4% (normal mass fraction), the Mg12Zn(Y, Er) phase mainly exists as large bulks, and some a-Mg grains are thoroughly penetrated by the lamellar phases. Moreover, the crystallography structures of the Mgl2Zn(Y, Er) and Mg24(Er, Y, Zn)5 phases are confirmed as 18R-type long-period stacking ordered structure and body-centred cubic structure, respectively.
Three kinds of different phases of Mg-xLi-1Al alloys with x=5 (full α LA51), 9 (dual-phase LA91), and 14 (rich-βLA141) were prepared by vacuum melting method. Their microstructure and damping capacities were investigated by optical microscopy, X-ray diffractometry, and dynamic mechanical analysis. The results show that the addition of Li changes the crystal structure of the alloys and causes new damping mechanisms to emerge. And the appearance of BCC structure makes the damping performance improved remarkably. The lower the elastic modulus is, the smaller the strain is and even the slower the acceleration is. The dual-phase alloy shows a better damping capacity while the temperature changes. Furthermore, all three alloys have two significant peaks:P1 caused by the movement of dislocations on the basal planes and P2 caused by the sliding of grain boundaries.
In this study,the optimization of mechanical and damping capacities of Mg-0.6 wt.%Zr alloys by controlling the recrystallized(DRXed)grain size under varying extrusion processing parameters including extrusion temperature T and strain rate was investigated.The relationship between the DRXed grain size and damping properties of the studied alloy was also discussed.The DRXed grain size of the as-extruded Mg-Zr alloys decreased as the extrusion temperature T decreased and the strain rateεincreased.As the DRXed grain size decreased,the strength and elongation of the as-extruded alloys exhibited improved performance through the grain refinement mechanism,while the damping properties deteriorated.The extrusion temperature of the Mg-Zr alloy had relatively greater effects on the mechanical and damping properties than the strain rate.The results of the present work indicate that alloys with appropriate mechanical and damping properties may be obtained from controlling the DRXed grain size by careful tailoring of the extrusion process parameters.
Jingfeng WangZhongshan WuShan GaoRuopeng LuDezhao QinWenxiang YangFusheng Pan
The micro-alloying effects of Y on the microstructure, mechanical properties, and bio-corrosion behavior of Mg69-xZn27Ca4Yx(x= 0, 1, 2 at.%) alloys were investigated through X-ray diffraction, compressive tests,electrochemical treatments, and immersion tests. The Mg69Zn27Ca4 alloy was found to be absolutely amorphous, and its glass-forming ability decreased with the addition of Y. The Mg68Zn27Ca4Y1 alloy exhibited an ultrahigh compressive strength above 1010 MPa as well as high capacity for plastic strain above 3.1%.Electrochemical and immersion tests revealed that these Y-doped MgeZ neC a alloys had good bio-corrosion resistance in simulated body fluid(SBF) at 37℃. The results of the cytotoxicity test showed high cell viabilities for these alloys, which means good bio-compatibility.
Jingfeng WangYang LiSong HuangYiyun WeiXingfeng XiKaiyong CaiFusheng Pan
Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.