利用Leggett-Williams不动点定理,并赋予f,g一定的增长条件,证明了二阶多点微分方程组边值问题u″+f(t,u,v)=0,v″+g(t,u,v)=0,0 t 1,u(0)=v(0)=0,u(1)-∑n-2i=1kiu(ξi)=0,v(1)-∑m-2i=1liv(ηi)=0,至少存在三对正解,其中f,g:[0,1]×[0,∞)×[0,∞)→[0,∞)是连续的.
The existence of solutions at resonance is obtained by using the an example to demonstrate our result. noncontinuous. for the 2n-order m-point boundary value problem coincidence degree theory of Mawhin. We give The interest is that the nonlinear term may be
This paper presents sufficient conditions for the existence of positive solutions to some second-order system of difference equations subject to some boundary conditions. We show that it has at least three positive solutions under some assumptions by applying the fixed point theorem.
Zhang Jiehua (College of Sunshine,Fuzhou University,Fuzhou 350015) Guo Yanping (College of Sciences,Hebei University of Science and Technology,Shijiazhuang 050018)