Most adaptive speckle filters are based on the local coefficient of variation, which serves to measure the heterogeneity of synthetic aperture radar (SAR) images. However, the sensitivity of the measurements to speckle and noise of SAR images would greatly deteriorate the speckle reduction. This article, based upon the information theory, presents a novel parameter for the heterogeneity measurement as a general index to quantitate the SAR image heterogeneity. Further, as a new speckle reduction algorithm based on the aforesaid quantitative heterogeneity measurements, it puts forward a heterogeneity-based speckle reduction filter (HBSRF), which uses the information-theoretic heterogeneity measurements as a criterion to classify the SAR images as belonging to homogeneous or heterogeneous regions. Then the finite iteration procedure and edge detection algorithms are adopted to strike the best balance between speckle reduction and edge preservation. The results from the computer simulation have demonstrated that the proposed effective method is superior to the conventional speckle filters based on the local coefficient of variation both in textural preservation and speckle reduction.