Sea surface height (SSH) variability in the Mindanao Dome (MD) region is found to be one of the strong variations in the northern Pacific. It is only weaker than that in the Kuroshio Extension area, and is comparable to that in the North Pacific Subtropical Countercurrent region. Based on a 1.5-layer reduced gravity model, we analyzed SSH variations in this region and their responses to northern tropical Pacific winds. The average SSH anomaly in the region varies mainly on a seasonal scale, with significant periods of 0.5 and 1 year, ENSO time scale2-7years, and time scale in excess of 8 years. Annual and long-term variabilities are comparably stronger. These variations are essentially a response to the northern tropical Pacific winds. On seasonal and ENSO time scales, they are mainly caused by wind anomalies east of the region, which generate westward-propagating, long Rossby waves. On time scales longer than 8 years, they are mostly induced by local Ekman pumping. Long-term SSH variations in the MD region and their responses to local winds are examined and discussed for the first time .
The low-frequency atmosphere ocean coupled vestigated using observation data over 1958-2010 variability of the southern Indian Ocean (SIO) was in- These data were obtained from ECMWF for sea level pressure (SLP) and wind, from NCEP/NCAR for heat fluxes, and from the Hadley Center for SST. To obtain the coupled air-sea variability, we performed SVD analyses on SST and SLP. The primary coupled mode represents 43% of the total square covariance and is featured by weak westerly winds along 45~ 30~S. This weakened subtropical anticyclone forces fluctuations in a well-known subtropical dipole structure in the SST via wind-induced processes. The SST changes in response to atmosphere forcing and is predictable with a lead-time of 1 2 months. Atmosphere ocean coupling of this mode is strongest during the austral summer. Its principle component is characterized by mixed interannual and interdeeadal fluctuations. Titere is a strong relationship between the first mode and Antarctic Oscillation (AAO). The AAO can influence tile coupled processes in the SIO by modulating the subtropical high. The second mode, accounting for 30% of the total square covariance, represents a 25-year period interdecadal oscillation in tile strength of the subtropical anticyclone that is accompanied by fluctuations of a monopole structure in the SST along the 35~ 25~S band. It is caused by subsidence of the atmosphere. The present study also shows that physical processes of both local thermodynamic and ocean circulation in the SIO have a crucial role in the fornmtion of the atmosphere-ocean eovariability.
Seasonal variability of the North Equatorial Current (NEC) transport in the western Pacific Ocean is investigated with ECMWF Ocean Analysis/Reanalysis System 3 (eRA-S3). The result shows that NEC transport (NT) across different longitudes in the research area shows a similar double-peak structure, with two maxima (in summer and winter), and two minima (in spring and autumn). This kind of structure can also be found in NEC geostrophic transport (NGT), but in a different magnitude and phase. These differences are attributable to Ekman transport induced by the local meridional wind and transport caused by nonzero velocity at the reference level, which is assumed to be zero in the NGT calculation. In the present work, a linear vorticity equation governing a 1.5-layer reduced gravity model is adopted to examine the dynamics of the seasonal variability of NGT. It is found that the annual cycle of NGT is mainly controlled by Ekman pumping induced by local wind, and westward-propagating Rossby waves induced by remote wind. Further research demonstrates that the maximum in winter and minimum in spring are mostly attributed to wind east of the dateline, whilst the maximum in summer and minimum in autumn are largely attributed to that west of the dateline.
Interannual variability of the Antarctic Circumpolar Current (ACC) strength is studied in stream-coordinate with twenty-year Absolute Dynamic Topography data from satellite altimetry. The stream-coordinate projection method separates the ACC from adjacent subtropical and subpolar gyres, enabling consideration of the zonal asymmetry of the ACC rather than assuming that the ACC is a purely zonal flow. It is shown that the ACC strength has large interannual variations with two recent peaks around 2000 and 2009. The interannual variability appears mainly in the Indo-Pacific sector of the Southern Ocean and the strongest signal is located south of Australia. The intensification of the westerly wind in 1998 and 2008 appears to cause the strengthening of the ACC via baroclinic processes.
A heat center (HC) of the western Pacific warm pool (WPWP) is defined, its variability is examined, and a possible mechanism is discussed. Analysis and calculation of a temperature dataset from 1945-2006 show that the mean position of the HC during this period was near 0.4°S/169.0°E, at 38.0 m depth. From a time series of the HC, remarkable seasonal variability was found, mainly in the meridional and vertical directions. Interannual variabilities were dominant in the zonal and vertical directions. In addition, semiannual variation in the HC depth was discovered. The longitude of the HC varies with ENSO events, and its latitude is weakly related to ENSO on time scales shorter than a decade. The variation of the HC longitude leads the Nifio-3 index by about 3-4 months, and its depth lags the index for approximately 3 months. It is concluded that the HC depth results from a combination of its longitudinal and latitudinal variations. Low-pass-filtered time series reveal that the HC has moved eastward since the mid 1980s.
The relationship of the interannual variability of the transport and bifurcation latitude of the North Equatorial Current (NEC) to the E1 Nifio-Southern Oscillation (ENSO) is investigated. This is done through composite analysis of sea surface height (SSH) observed by satellite altimeter during October 1992-July 2009, and correspondingly derived sea surface geostrophic currents. During E1 Nifio/La Nifia years, the SSH in the tropical North Pacific Ocean falls/rises, with maximum changes in the region 0-15~N, 130~E-160~E. The decrease/increase in SSH induces a cyclonic/anticyclonic anomaly in the western tropical gyre. The cyclonic/anticyclonic anomaly in the gyre results in an increase/decrease of NEC transport, and a northward/southward shift of the NEC bifurcation latitude near the Philippine coast. The variations are mainly in response to anomalous wind forcing in the west-central tropical North Pacific Ocean, related to ENSO events.
As it is well-known, the North Equatorial Current (NEC) bifurcates into the Kuroshio flowing northward and the equatorward Mindanao Current, which is well depicted by Munk's theory in 1950 in terms of its climatology. However, Munk's theory is unable to tell the NEC bifurcation variability with time. In the present paper, a time-dependent baroclinic model forced by wind, in which temporal and baroclinic terms are added to Munk's equation, is proposed to examine the seasonal variability of the NEC bifurcation latitude. An analytical solution is obtained, with which the seasonal variability can be well described: NEC bifurcation reaches its northernmost position in December and its southernmost position in June with a range of about 1° in latitude, consistent with previous results with observations. The present solution will degenerate to Munk's one in the case of steady and barotropic state.