Based on laser radar equations, a Doppler shift model of a laser pulse beam scattered by a rotating arbitrary convex target is reported in this paper. The boundary relations between an incident pulse beam and the detected area elements are analyzed by geometric methods. The Doppler shift characteristics of the rotating cone and cylinder are discussed and the difference between the laser pulse beam and the plane wave scattered from the same rotating target is compared accordingly. Numerical simulations show that the Doppler shift is tightly relevant to their dimensions, speeds, and so on. In the same incidence conditions, the pulse beam and plane wave have difference peak values and the same Doppler shift bandwidth. If the waist radius of the pulse beam is larger, the peak value is higher, and the Doppler shifts are proportional to the speed of the rotating target. By virtue of our theoretical model, we probe into the scattered characteristics of the Doppler shifts of a laser pulse beam, which would benefit target identification in national defense.