Pt is a catalyst in proton exchange membrane fuel cell (PEMFC), and its activity will be degraded in the air due to the exist- ence of SOx impurities. On strategy is introducing of Mo into the Pt catalyst because it can improve the SOx-tolerance capacity. Based on the aforementioned phenomenon, a density function theory (DFT) study on SOx adsorbed on Pt(111) and PtMo(111) was performed to enhance Pt catalytic activity. The adsorption energy of adsorbed species, the net change, partial density of state (PDOS), and d-band center were calculated and analyzed comparatively. The results show that the presence of Mo-atom weakens the S-Pt bond strength and reduces the adsorption energies for SO2, S and SO3 on PtMo(111). Moreover, the Mo atom weakens the effects of SO2 on the PtMo(lll) electronic structure and makes the catalyst maintains its original electronic structure after SO2 adsorption as compared with Pt(111).
Based on the generalized gradient approximation (GGA), Perdew-Wang-91 (PW91) combined with a periodic slab model has been applied to study the catalytic activity of chlorine evolution on TinRumO2 (1 1 0) surface. Metal oxide model TinRumO2 has been established with pure TiO2 and Ru02 on the basis set of Double Numerical plus polarization (DNP), in which the proportion of n:m was 3:1, 1 :l, or 1:3. Analysis on the reaction activity in the electrochemical reaction and the electrochemical desorption reaction was based on Frontier molecular orbital theory. The results show that the TinRumO2 with a ratio of Ti:Ru at 3:1 is best facilitates the electrochemical reaction and electrochemical desorption reaction to produce M-Clads intermediate and precipitate C12. In addition, the adsorption energy of Cl on the surface of Ti3RU102 possesses the minimum value of 2.514 eV, and thus electrochemical desorption reaction could occur most easily.
Xiao-Hua HuJia-Chuan PanDan WangWen ZhongHao-Yuan WangLin-Yi Wang