Large-area monolayer graphene samples grown on polycrystalline copper foil by thermal chemical vapor deposition with differing CH4 flux and growth time are investigated by Raman spectra, scanning electron microscopy, atomic force microscopy, and scanning tunneling microscopy. The defects, number of layers, and quality of graphene are shown to be controllable through tuning the reaction conditions: ideally to 2-3 sccm CH4 for 30 minutes.
We report on temperature-programmed growth of graphene islands on Ru (0001) at annealing temperatures of 700 ℃, 800 ℃, and 900 ℃. The sizes of the islands each show a nonlinear increase with the annealing temperature. In 700 ℃ and 800 ℃annealings, the islands have nearly the same sizes and their ascending edges are embedded in the upper steps of the ruthenium substrate, which is in accordance with the etching growth mode. In 900 ℃ annealing, the islands are much larger and of lower quality, which represents the early stage of Smoluchowski ripening. A longer time annealing at 900 ℃ brings the islands to final equilibrium with an ordered moire pattern. Our work provides new details about graphene early growth stages that could facilitate the better control of such a growth to obtain graphene with ideal size and high quality.
A method of measuring the thermoelectric power of nano-heterostructures based on four-probe scanning tunneling microscopy is presented. The process is composed of the in-situ fabrication of a tungsten-indium tip, the precise control of the tip-sample contact and the identification of thermoelectric potential. When the temperature of the substrate is elevated, while that of the tip is kept at room temperature, a thermoelectric potential occurs and can be detected by a current voltage measurement. As an example of its application, the method is demonstrated to be effective to measure the thermoelectric power in several systems. A Seebeck coefficient of tens of IxV/K is obtained in graphene epitaxially grown on Ru (0001) substrate and the thermoelectric potential polarity of this system is found to be the reverse of that of bare Ru (0001) substrate.
Intercalations of metals and silicon between epitaxial graphene and its substrates are reviewed. For metal intercala- tion, seven different metals have been successfully intercalated at the interface of graphene/Ru(O001) and form different intercalated structures. Meanwhile, graphene maintains its original high quality after the intercalation and shows features of weakened interaction with the substrate. For silicon intercalation, two systems, graphene on Ru(O001) and on Ir(l I 1), have been investigated. In both cases, graphene preserves its high quality and regains its original superlative properties after the silicon intercalation. More importantly, we demonstrate that thicker silicon layers can be intercalated at the interface, which allows the atomic control of the distance between graphene and the metal substrates. These results show the great potential of the intercalation method as a non-damaging approach to decouple epitaxial graphene from its substrates and even form a dielectric layer for future electronic applications.
We investigate the thermoelectric-transport properties of metal/graphene/metal hetero-structure. We use a single band tight-binding model to prcsent the two-dimensional electronic band structure of graphene. Using the LandauerButticker formula and taking the coupling between graphene and the two electrodes into account, we can calculate the thermoelectric potential and current versus temperature. It is found that in spite of metal electrodes, the carrier type of graphene determines the electron motion direction driven by the difference in temperature between the two electrodes, while for n type graphene, the electrons move along the thermal gradient, and for p type graphene, the electrons move against the thermal gradient.
A collapse and revival shape of Rabi oscillations in an electron spin of a single nitrogen-vacancy centre has been observed in diamond at room temperature. Because of hyperfine interaction between the host ^14N nuclear spin and the nitrogen-vacancy centre electron spin, different orientations of the ^14N nuclear spins lead to a triplet splitting of the transition between ground state (ms = 0) and excited state (ms=1). The manipulation of the single electron spin of nitrogen-vacancy centre is achieved by using a combination of selective microwave excitation and optical pumping at 532 nm. Microwaves can excite three transitions equally to induce three independent nutations and the shape of Rabi oscillations is a combination of the three nutations.