A direct method for obtaining the expanding integrable models of the hierarchies of evolution equations was proposed. By using the equivalent transformation between the matrices, a new isospectral problem was directly established according to the known isospectral problem, which can be used to obtain the expanding integrable model of the known hierarchy.
The trace identity is extended to the general loop algebra. The Hamiltonian structures of the integrable sys- tems concerning vector spectral problems and the multi-component integrable hierarchy can be worked out by using the extended trace identity. As its application, we have obtained the Hamiltonian structures of the Yang hierarchy, the Korteweg-de-Vries (KdV) hierarchy, the multi-component Ablowitz-Kaup-Newell-Segur (M-AKNS) hierarchy, the multi-component Ablowitz-Kaup-Newell-Segur Kaup-Newell (M-AKNS-KN) hierarchy and a new multi-component integrable hierarchy separately.