In this paper,we derive Darboux transformation of the inhomogeneous Hirota and the Maxwell-Bloch(IH-MB)equations which are governed by femtosecond pulse propagation through inhomogeneous doped fibre.The determinant representation of Darboux transformation is used to derive soliton solutions,positon solutions to the IH-MB equations.
Based on the analytic property of the symmetric q-exponent e_q(x),a new symmetric q-deformed Kadomtsev-Petviashvili(q-KP for short) hierarchy associated with the symmetric q-derivative operator α_q is constructed.Furthermore,the symmetric q-CKP hierarchy and symmetric q-BKP hierarchy are defined.The authors also investigate the additional symmetries of the symmetric q-KP hierarchy.
In this paper, considering the Hirota and the Maxwell–Bloch (H-MB) equations which are governed by femtosecond pulse propagation through a two-level doped fiber system, we construct the Darboux transformation of this system through a linear eigenvalue problem. Using this Daurboux transformation, we generate multi-soliton, positon, and breather solutions (both bright and dark breathers) of the H-MB equations. Finally, we also construct the rogue wave solutions of the above system.
The Wahlquist-Estabrook (WE) prolongation structures of modified Boussi-nesq (MB) system are studied from the coverings point of view. The realizations and classifications of one-dimensional coverings of this system are obtained completely. More-over the sufficient and necessary conditions for a vector field to be a nonlocal symmetry of this system are also demonstrated in the WE prolongation structures.
By modifying the procedure of binary nonlinearization for the AKNS spectral problem and its adjoint spectral problem under an implicit symmetry constraint, we obtain a finite dimensional system from the Lax pair of the nonlinear Schrodinger equation. We show that this system is a completely integrable Hamiltonian system.