This paper studies the input-output finite-time stabilization problem for time-varying linear singular sys- tems. The output and the input refer to the controlled output and the disturbance input, respectively. Two classes of dis- turbance inputs are considered, which belong to L-two and L-infinity. Sufficient conditions are firstly provided which guarantee the input-output finite-time stability. Based on this, state feedback controllers are designed such that the resultant closed-loop systems are input-output finite-time stable. The conditions are presented in terms of differential linear matrix inequalities. Finally, an example is presented to show the validity of the proposed results.