Titanium dioxide-double-walled carbon nano- tubes (TiO2-DWCNTs) with DWCNTs/TiO2 of 20 wt.% is prepared by a conventional sol-gel method. Doping the TiO2-DWCNTs in TiO2 photoanode, a flexible dye- sensitized solar cell (DSSC) is fabricated. The sample is characterized by scanning electron microscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) absorption, ultraviolet-visible spectroscopy (UV- vis) absorption spectra , electrochemical impedance spec- troscopy (EIS) technique and photovoltaic measurement. It is found that adding a certain amount of TiO2-DWCNTs can efficiently decrease the resistance of charge transport, improve dye adsorption. Under an optimal condition, a flexible DSSC contained with 0.50 wt.% TiOz-DWCNTs achieves a light-to-electric energy conversion efficiency of 3.89% under a simulate solar light irradiation of 100 mW. cm^2.
High performance Pt counter electrode is prepared by using vacuum thermal decomposition at a relatively low (120℃) temperature on a flexible polyethylene naphthalate substrate coated with indium-doped tin oxide for use in flexible dye-sensitized solar cells.The obtained Pt counter electrode shows a good chemical stability,high light transmittance,and high electrocatalytic activity for the I3-/I-redox reaction.The energy conversion efficiency of a flexible dye-sensitized solar cell based on the prepared Pt counter electrode and a TiO 2 /Ti photoanode reaches 5.14% under a simulated solar light irradiation with intensity of 100 mW cm-2.
XIAO YaoMing,WU JiHuai,CHENG CunXi,CHEN Yuan,YUE GenTian,LIN JianMing,HUANG MiaoLiang,FAN LeQing & LAN Zhang Engineering Research Center of Environment-Friendly Functional Materials,Ministry of Education,Institute of Materials Physical Chemistry,Huaqiao University,Quanzhou 362021,China
A microporous platinum/fullerenes (Pt/C 60) counter electrode was prepared by using a facile rapid thermal decomposition method,and the quantum-dot sensitized solar cell (QDSSC) of Pt/C 60-TiO 2-CdS-ZnS and Pt/C 60-TiO 2-CdTe-ZnS was fabrication.The technique forms a good contact between QDs and TiO 2 films.The photovoltaic performances of the as-prepared cells were investigated.The QDSSCs with Pt/C 60 counter electrode show high power conversion efficiency of 1.90% and 2.06%,respectively (under irradiation of a simulated solar light with an intensity of 100 mW cm 2),which is comparable to the one fabricated using conventional Pt electrode.
A simple method for the controllable hydrothermal synthesis of nanocrystalline anatase TiO2(nc-TiO2) particles involving the selection of suitable organic alkali peptizing agents is reported.A dye-sensitized solar cell(DSSC) with square-like nc-TiO2 particles with side lengths about 8-13 nm-prepared using tetraethylammonium hydroxide(TEAOH)-in the photoelectrode showed higher photovoltaic performance than two other DSSCs with square-like nc-TiO2 particles with side lengths about 7-10 nm-prepared using tetrabutylammonium hydroxide-or elongated nc-TiO2 particles with lengths about 18-35 nm and width about 10 18 nm-prepared using tetramethylammonium hydroxide(TMAOH)-in the photoelectrodes.When a scattering layer prepared from sub-micron size spheres or cone-like nc-TiO2 particles-synthesized using a higher concentration of TMAOH-was added on top of the photoelectrode fabricated from nc-TiO2 synthesized with TEAOH,the energy conversion efficiency of the DSSC was markedly increased from 6.77% to 8.18%.
This paper reports a novel strategy for preparing redox-active electrolyte through introducing a redox-mediator(p-phenylenediamine,PPD) into KOH electrolyte for the application of ball-milled MnO 2-based supercapacitors.The morphology and compositions of ball-milled MnO 2 were characterized using scanning electron microscopy(SEM) and X-ray diffraction(XRD).The electrochemical properties of the supercapacitor were evaluated by cyclic voltammetry(CV),galvanostatic charge-discharge(GCD),and electrochemical impedance spectroscopy(EIS) techniques.The introduction of p-phenylenediamine significantly improves the performance of the supercapacitor.The electrode specific capacitance of the supercapacitor is 325.24 F g-1,increased by 6.25 folds compared with that of the unmodified system(44.87 F g-1) at the same current density,and the energy density has nearly a 10-fold increase,reaching 10.12 Wh Kg-1.In addition,the supercapacitor exhibits good cycle-life stability.