The study aimed to investigate the impact of intraclot recombinant tissue-type plasminogen activator (rt-PA) on perihematomal edema (PHE) development in patients with intracerebral hemorrhage (ICH) treated with minimally invasive surgery (MIS) and the effects of intraclot rt-PA on the 30-day survival. We reviewed the medical records of ICH patients undergoing MIS between October 2011 and July 2013. A volumetric analysis was done to assess the change in PHE and ICH volumes at pre-MIS (T1), post-MIS (T2) and day 10-16 (T3) following diagnostic computed tomographic scans (To). Forty-three patients aged 52.8±11.1 years with (n=30) or without rt-PA (n=13) were enrolled from our institutional ICH database. The median rt-PA dose was 1.5 (1) mg, with a maximum dose of 4.0 mg. The ratio of clot evacuation was significantly increased by intraclot rt-PA as compared with controls (77.9%±20.4% vs. 64%±15%; P=0.046). From TI to T2, reduction in PHE volume was strongly associ- ated with the percentage of clot evacuation (p=0.34; P=-0.027). In addition, PHE volume was positively correlated with residual ICH volume at the same day (p ranging from 0.39-0.56, P〈0.01). There was no correlation between the cumulative dose of rt-PA and early (T2) PHE volume (p=0.24; P=0.12) or de- layed (T3) PHE volume (p=0.19; P=0.16). The 30-day mortality was zero in this cohort. In the selected cohort of ICH patients treated with MIS, intraclot rt-PA accelerated clot removal and had no effects on PHE formation. MIS aspiration and low dose of rt-PA seemed to be feasible to reduce the 30-day mor- tality in patients with severe ICH. A large, randomized study addressing dose titration and long-term outcome is needed.
Mesenchymal stromal/stem cells(MSCs) are multipotent cells under consideration as a potential new therapy for a variety of inflammatory diseases including certain neurological disorders. It is generally thought that the efficacy of cell therapy in attenuating damage after ischemia, inflammation, or injury depends on the quantity of transplanted cells recruited to the target tissue. However, only a small number of systematically infused MSCs can effectively migrate to target sites, which significantly decreases the efficacy of exogenous cell-based therapy. In this review, we discuss specific factors influencing MSC migration, and summarize current strategies that effectively promote the motility of MSCs. In addition, we describe several protocols to improve the migration of stromal cells into the nervous system and, therefore,enhance the efficiency of engraftment as means of treating neurological disorders.