The tropospheric delay is one of the main error sources for radio navigation technologies and other ground-or space-based earth observation systems. In this paper, the spatial and temporal variations of the zenith tropospheric delay (ZTD), especially their dependence on altitude over China region, are analyzed using ECMWF (European Centre for Medium-Range Weather Forecast) pressure-level atmospheric data in 2004 and the ZTD series in 1999-2007 measured at 28 GPS stations from the Crustal Movement Observation Network of China (CMONC). A new tropospheric delay correction model (SHAO) is derived and a regional realization of this model for China region named SHAO-C is established. In SHAO-C model, ZTD is modeled directly by a cosine function together with an initial value and an amplitude at a reference height in each grid, and the variation of ZTD along altitude is fitted with a second-order polynomial. The coefficients of SHAO-C are generated using the meteorology data in China area and given at two degree latitude and longitude interval, featuring regional characteristics in order to facilitate a wide range of navigation and other surveying applications in and around China. Compared with the EGNOS (European Geostationary Navigation Overlay Service) model, which has been used globally and recommended by the European Union Wide Area Augmentation System, the ZTD prediction (in form of spatial and temporal projection) accuracy of the SHAO-C model is significantly improved over China region, especially at stations of higher altitudes. The reasons for the improvement are: (1) the reference altitude of SHAO-C parameters are given at the average height of each grid, and (2) more detailed description of complicated terrain variations in China is incorporated in the model. Therefore, the accumulated error at higher altitude can be reduced considerably. In contrast, the ZTD has to be calculated from the mean sea level with EGNOS and other models. Compared with the direct estimation of ZTD from the 28 GPS stations, the accur
The problems of ITRF2008,the latest International Terrestrial Reference Frame,are pointed out and analyzed as follows:(1) ITRF is not a mm-level Terrestrial Reference Frame;(2) the origin of ITRF is neither the Earth's center of mass (CM) nor the center of figure (CF);(3) the scale of ITRF is not a uniform system in the sense of the gravitational theory of relativity.These problems result from the linear hypothesis used in the establishment and maintenance of ITRF,which includes the linear hypothesis of the coordinates definition of the ITRF reference stations,and the seven coordinate transformation parameters (three translation parameters,three rotation parameters,and one scale parameter) when the ITRF combine solution is constructed.The linear hypothesis of the ITRF construction leads to the current terrestrial reference frame only at the cm-level,which cannot satisfy the requirements of monitoring mm-level crust movements as well as the global environment.This article points out that the construction of a mm-level Terrestrial Reference Frame is actually a leap from linear to nonlinear.Therefore,according to the main characteristics of nonlinear changes of the crust's deformation,the geocenter motion and the overall height fluctuation of the Earth,the new ITRF station coordinates definition and the new observation equations of combined solutions are constructed for the realization of a mm-level nonlinear ITRF,which can solve the problems of the current ITRF.