The R/Ba-ordered and R-site mixed compound Y0.5La0.5BaMn2O6 is synthesized, in which (Y, La) and Ba are regularly arranged, while Y and La randomly occupy the R-site. Y0.5La0.5BaMn2O6 has a tetragonal unit cell with a space group of P4/mmm. A structural transition between tetragonal and orthorhombic is observed at about 325 K by X-ray powder diffraction (XRD). Thermal magnetic measurement shows the occurrence of an antiferromagnetic transition at the temperature TN~190 K. Anomalies in magnetization, resistivity and lattice parameters observed around 340 K indicate a charge/orbital order transition accompanying the structural phase transition. The R-site randomness effect is discussed to interpret the different properties of Y0.5La0.5BaMn2O6 between NdBaMn2O6 and SmBaMn2O6.
New oxometallides with the formula Ba5Y8-xMn4021-1.5x (x = 0, 1) are prepared through an atmosphere-controlled solid-state reaction. Two single-phase samples with Ba/Y/Mn atomic ratios 5/8/4 (Y8) and 5/7/4 (Y7) are obtained. The crystal structures and the physical properties of the compounds are investigated by X-ray powder diffraction, magnetization, conductivity, and dielectricity measurements. The Ba5Y8-xMn4021-1.5x compound is demonstrated to be a Y-deficient solid solution. The solid solution compound Ba5Y8-xMn4021-1.5x crystallizes into tetragonal symmetry with the space group I4/m. Detailed structure analysis by Rietveld refinement of the X-ray powder diffraction data reveals that the Y vacancies occur preferentially at the Y(2) site. Thermal magnetization measurements indicate the presence of antiferromagnetic interaction between Mn ions in the compounds, and temperature-dependent resistivity measurements show that insulator-semiconductor transitions occur around 175 K and 170 K for the Y8 and Y7 samples, respectively. Strong frequency dependences of the dielectric constant are observed above -175 K for the two compounds.