Imparting electro-conductive properties to nanocellulose-based products may render them suitable for applications in electronics, optoelectronics, and energy storage devices. In the present work, an electro-conductive nanocrystalline cellulose (NCC) film filled with TiO2-reduced-graphene oxide (TiO2-RGO) was developed. Initially, graphene oxide (GO) was prepared using the modified Hummers method and thereafter photocatalytically reduced using TiO2 as a catalyst. Subsequently, an electro-conductive NCC film was prepared via vacuum filtration with the as-prepared TiO2-RGO nanocomposite as a functional filler. The TiO2-RGO nanocomposite and the NCC/TiO2-RGO film were systematically characterized. The results showed that the obtained TiO2-RGO nanocomposite exhibited reduced oxygen-containing group content and enhanced electro-conductivity as compared with those of GO. Moreover, the NCC flm flled with TiO2-RGO nanocomposite displayed an electro-conductivity of up to 9.3 S/m and improved mechanical properties compared with that of the control. This work could provide a route for producing electro-conductive NCC flms, which may hold signifcant potential as transparent ?exible substrates for future electronic device applications.
Cellulose is the most abundant renewable polymer in the nature,and cellulosic paper is widely used in our daily life.Conferring electroconductivity to cellulosic paper would allow this conventional material to hold great promise for a wide range of energy-related applications.In the present work,multi-walled carbon nanotube(MWCNT)/polyaniline(PANI)nanocomposites were synthesized via in situ oxidation polymerization process and characterized by FT-IR and TEM.Subsequently,the application of the synthesized MWCNT/PANI nanocomposites as a wet-end filler for the production of electro-conductive paper was demonstrated/developed.Results showed that the cellulosic paper was imparted with an electro-conductivity of up to 0.14 S·m^(-1) while exhibiting a pronounced improvement in mechanical properties as a function of the added MWCNT/PANI nanocomposites.