As a basic and advanced machining technique,the high-speed milling process plays an important role in realizing the goal of high performance manufacturing.From the viewpoint of machining dynamics,obtaining chatter-free machining parameters is a prerequisite to guaranteeing machining accuracy and improving machining efficiency.This paper gives an overview on recent progress in time domain semi-analytical methods for chatter stability analysis of milling processes.The state of art methods of milling stability prediction in milling processes and their applications are introduced in detail.The bottlenecks involved are analyzed,and potential solutions are discussed.Finally,a brief prospect on future works is presented.
As one of the bases of gradient-based optimization algorithms, sensitivity analysis is usually required to calculate the derivatives of the system response with respect to the machining parameters. The most widely used approaches for sensitivity analysis are based on time-consuming numerical methods, such as finite difference methods. This paper presents a semi-analytical method for calculation of the sensitivity of the stability boundary in milling. After transforming the delay-differential equation with time-periodic coefficients governing the dynamic milling process into the integral form, the Floquet transition matrix is constructed by using the numerical integration method. Then, the analytical expressions of derivatives of the Floquet transition matrix with respect to the machining parameters are obtained. Thereafter, the classical analytical expression of the sensitivity of matrix eigenvalues is employed to calculate the sensitivity of the stability lobe diagram. The two-degree-of-freedom milling example illustrates the accuracy and efficiency of the proposed method. Compared with the existing methods, the unique merit of the proposed method is that it can be used for analytically computing the sensitivity of the stability boundary in milling, without employing any finite difference methods. Therefore, the high accuracy and high efficiency are both achieved. The proposed method can serve as an effective tool for machining parameter optimization and uncertainty analysis in high-speed milling.
The conventional prediction of milling stability has been extensively studied based on the assumptions that the milling process dynamics is time invariant. However, nominal cutting parameters cannot guarantee the stability of milling process at the shop floor level since there exists many uncertain factors in a practical manufacturing environment. This paper proposes a novel numerical method to estimate the upper and lower bounds of Lobe diagram, which is used to predict the milling stability in a robust way by taking into account the uncertain parameters of milling system. Time finite element method, a milling stability theory is adopted as the conventional deterministic model. The uncertain dynamics parameters are dealt with by the non-probabilistic model in which the parameters with uncertainties are assumed to be bounded and there is no need for probabilistic distribution densities functions. By doing so, interval instead of deterministic stability Lobe is obtained, which guarantees the stability of milling process in an uncertain milling environment, In the simulations, the upper and lower bounds of Lobe diagram obtained by the changes of modal parameters of spindle-tool system and cutting coefficients are given, respectively. The simulation results show that the proposed method is effective and can obtain satisfying bounds of Lobe diagrams. The proposed method is helpful for researchers at shop floor to making decision on machining parameters selection.
This paper focuses on the development of an efficient semi-analytical solution of chatter stability in milling based on the spectral method for integral equations. The time-periodic dynamics of the milling process taking the regenerative effect into account is formulated as a delayed differential equation with time-periodic coefficients, and then reformulated as a form of integral equation. On the basis of one tooth period being divided into a series of subintervals, the barycentric Lagrange interpolation polynomials are employed to approximate the state term and the delay term in the integral equation, respectively, while the Gaussian quadrature method is utilized to approximate the integral tenn. Thereafter, the Floquet transition matrix within the tooth period is constructed to predict the chatter stability according to Floquet theory. Experimental-validated one-degree-of-freedom and two-degree-of-freedom milling examples are used to verify the proposed algorithm, and compared with existing algorithms, it has the advantages of high rate of convergence and high computational efficiency.
This paper analyzes the stability of milling with variable pitch cutter and tool runout cases characterized by multiple delays,and proposes a new variable-step numerical integration method for efficient and accurate stability prediction. The variable-step technique is emphasized here to expand the numerical integration method,especially for the low radial immersion cases with multiple delays. First,the calculation accuracy of the numerical integration method is discussed and the variable-step algorithm is developed for milling stability prediction for single-delay and multiple-delay cases,respectively. The milling stability with variable pitch cutter is analyzed and the result is compared with those predicted with the frequency domain method and the improved full-discretization method. The influence of the runout effect on the stability boundary is investigated by the presented method. The numerical simulation shows that the cutter runout effect increases the stability boundary,and the increasing stability limit is verified by the milling chatter experimental results in the previous research. The numerical and experiment results verify the validity of the proposed method.