This paper takes concrete as a four-phase composite made of the intact matrix and three mutually perpendicular groups of penny-shaped micro-cracks. The intact matrix is assumed to be elastic,homogeneous and isotropic,and the micro-cracks are penny-shaped. Combined with the failure mechanism of concrete subjected to impact loading,a dynamic constitutive model for concrete is developed based on Mori-Tanaka's average stress concept and Eshelby's equivalent inclusion theory. Experimental results show that concrete is rate-dependent. The model predictions are in good agreement with the experimental results. The model may be used to simulate the mechanical behavior of concrete under impact loadings.
LIU HaiFeng1,2,LIU HaiYan3 & SONG WeiDong1 1 State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China
In combination with experimental research,numerical simulation is performed to investigate the influence law of the obstacles in a duct on the explosion flame of premixed coal gas and air. The numerical method uses upwind WENO scheme and two-step chemical reaction model. The interaction mechanism is addressed between the compression wave from reflection on the right end of the duct and flame propagation. The reflected wave is found to result in the decrease of flame velocity. On this basis,we analyze the mechanism of the obstacles on flame as well as the law of flow field variation thus caused. The results suggest that,due to the obstacles,deflagration wave is repeatedly reflected,combustible gas mixture is fully compressed,temperature and pressure rise,chemical reaction speed increases,and hence flame intensity is strengthened. At the same time,a tripe point forms as a result of wall reflection of the deflagration wave from the obstacles and furthermore local flame speed increases. As the triple point propagates forward,the flame speed gradually decreases due to dissipation of energy. These conclusions provide a valuable theoretical foundation for the prediction of explosion field,prevention of fire and explosion and effective control of the com-bustion speed and flame propagation speed in detonation propulsion.
WANG Cheng1,MA TianBao1 & LU Jie2 1 State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081,China
One-stage light gas gun was utilized to study the dynamic mechanical properties of AD90 alumina subjected to the shock loading. Manganin gauges were adopted to obtain the stress-time histories. The velocity interferometer system for any reflector (VISAR) was used to obtain the free surface velocity profile and determine the Hugoniot elastic limit. The Hugoniot curves were fitted with the experimental data. From Hugoniot curves the compressive behaviors of AD90 alumina were found to change typically from elastic to "plastic". The dynamic mechanical behaviors for alumina under impact loadings were analyzed by using the path line principle of Lagrange analysis, including the nonlinear characteristics, the strain rate dependence, the dispersion and declination of shock wave in the material. A damage model applicable to ceramics subjected to dynamic compressive loading has been developed. The model was based on the damage micromechanics and wing crack nucleation and growth. The effects of parameters of both the micro-cracks nucleation and the initial crack size on the dynamic fracture strength were discussed. The results of the dynamic damage evolution model were compared with the experimental results and a good agreement was found.
In order to develop a tandem warhead that can effectively destroy concrete targets, this paper explores the penetration performance of shaped charges with different cone angles and liner materials into concrete targets by means of experiments. The penetration process and the destruction mechanism of concrete targets by shaped charges and kinetic energy projectiles are analyzed and compared. Experimental results suggest that both kinetic energetic projectile and shaped charge are capable of destroying concrete targets, but the magnitudes of damage are different. Compared with a kinetic energy projectile, a shaped charge has more significant effect of penetration into the target, and causes very large spalling area. Hence, a shaped charge is quite suitable for first-stage charge of tandem warhead. It is also found that, with the increase of shaped charge liner cone angle, the depth of penetration decreases gradually while the hole diameter becomes larger. Penetration depth with copper liner is larger than of aluminum liner but hole diameter is relatively smaller, and the shaped charge with steel liner is between the above two cases. The shaped charge with a cone angle of 100° can form a jet projectile charge (JPC). With JPC, a hole with optimum depth and diameter on concrete targets can be formed, which guarantees that the second-stage warhead smoothly penetrates into the hole and explodes at the optimum depth to achieve the desired level of destruction in concrete targets.