A theoretical calculation of the miscibility gap with considering the mismatch strain and elastic parameters was performed for the GaN1-xPx ternary alloys on (0001) GaN/sapphire substrates based on the strictly regular solution model. The calculated results show that the boundary of the spinodal isotherm shifts from x=0.06 to x=0.25 at the growth temperature of 1200 K as the strain factor increases from 0 to 1, indicating that the strain in the GaN1-xPx layers can suppress the phase separation. Meanwhile, with the increase of the effective elastic parameters of GaN and GaP, the available maximum P content also increases slightly at the growing temperature.
Zhang Kaixiao Chen Dunjun Zhu Weihua Lin Jianwei Zhang Rong Zheng Youdou
The influence of polarization-induced electric fields on the electron distribution and the optical properties of intersubband transitions (ISBT) in AlxGa(1-x)N/GaN coupled double quantum wells (DQWs) is investigated by self-consistent calculation. It is found that the polarization-induced potential drop leads to an asymmetric potential profile of AlxGa(1-x)N/GaN DQWs even though the two wells have the same width and depth. The polarization effects result in a very large Stark shift between the odd and even order subbands,thus shortening the wavelength of the ISBT between the first odd order and the second even order (1odd-2 ) subbands. Meanwhile, the electron distribution becomes asymmetric due to the polarization effects, and the absorption coefficient of the 1odd-2 ISBT decreases with increasing polarization field discontinuity.
By using temperature-dependent current-voltage, variable-frequency capacitance-voltage, and Hall measurements, the effects of the thermal oxidation on the electrical properties of Ni/Au Schottky contacts on lattice-matched Ino.18Alo.82N/GaN heterostructures are investigated. Decrease of the reverse leakage current down to six orders of magni- tude is observed after the thermal oxidation of the Ino.18Alo.82N/GaN heterostructures at 700 ℃. It is confirmed that the reverse leakage current is dominated by the Frenkel-Poole emission, and the main origin of the leakage current is the emis- sion of electrons from a trap state near the metal/semiconductor interface into a continuum of electronic states associated with the conductive dislocations in the InxAll-xN barrier. It is believed that the thermal oxidation results in the formation of a thin oxide layer on the InxAll-xN surface, which increases the electron emission barrier height.