The effect of the elastic strain energy on the core-shell structures was studied in an Al-0.06Sc-0.02Er (at.%) alloy. A theoretical model for the calculation of the elastic strain energy caused by core-shell precipitates, which is applicable to materials with weak elastic anisotropy, was adopted. It was demonstrated that the partitioning of Er to the precipitate core did not reduce the elastic strain energy as expected in the previous study. The resistance due to the elastic strain energy to form an Al3(Sc0.36Ero.64)-Al3(Sc0.8Er0.2) core-shell precipitate was quite small, and could be easily overcome by the decrease of the total interracial energy, which was consistent with the previous experimental results. On the other hand, the resistance due to the elastic strain energy to form an Al3Er-Al3Sc core-shell precipitate was much larger than that to form an Al3(Sc0.36Er0.64)-Al3(Sc0.8Er0.2) core-shell precipitate, thus the partitioning of all the Er atoms to the core was strongly hindered by the elastic strain energy and was not observed in the experiment of the previous study.
Abstract The as-cast microstructures and solidification paths of the Nb-Si-Ti ternary alloys in the NbsSi3-TisSi3 region were investigated. Since there exist some isomor- phous compounds in the NbsSi3-TisSi3 region, such as aNbsSi3 with B3Cr5 prototype, 13NbsSi3 with Si3W5 pro- totype, 7NbsSi3 with MnsSi3 prototype, and TisSi3 with MnsSi3 prototype, the primary solidification areas of these compounds were not typically indentified in previous experiments. In the present paper, the microstructure observation, the phase identification, and the composition measurement were performed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and electron probe microanalysis (EPMA), respectively. No ternary compound is found. There exist three primary solidification areas, 13Nbs_x(Ti)xSi3, ~Nbs_x(Ti)xSi3, and Tis-x(Nb)xSi3 in the NbsSi3-TisSi3 region. Together with the literaturereported experimental data and optimization results, the liquidus projection of the whole Nb-Si-Ti ternary system is constructed, and totally ten primary solidification areas-- diamond-Si, Nb1-x(Ti)xSi2, Ti1-x(Nb)xSi2, Ti1-x(Nb)xSi, Ti5-x(Nb)xSi4, βNb5-x(Ti)xSi3,αNb5-x(Ti)xSi3, Ti5-x (Nb)xSi3, (Nb,Ti)3Si, and BCC--and nine transitional invariant reactions-L + Nb1-x(Ti)xSi2 → Ti1-x(Nb)x Si2 + Si, L + Nb1-x(Ti)xSi2 → Ti1-x(Nb)xSi2 + Ti5- (Nb)xSi4, L + Ti5-x(Nb)xSi4 → Ti1-x(Nb)xSi2 + Ti1-x (Nb)xSi, L + 13Nb5-x(Ti)5Si3→ Nb1-x(Ti)xSi2 + Ti5-x (Nb)xSi4, L + βNb5-x(Ti)xSi3→b5-x(Ti)xSi3 +Ti5-x (Nb)xSi4, L + αNb5-x(Ti)αSi3 → Ti5-x(Nb)xSi3 + Ti5-x(Nb)x Si4, L + αNb5-x(Ti)xSi3 →βNb5-x(Ti)xSi3 + Ti5-x(Nb)xSi3, L + βNb5-xTb-xSi3 → Ti5-x(Nb)xSi3 + (Nb,Ti)3Si, and L + (Nb,Ti)3Si → Ti5-x(Nb)xSi3 + BCC are confirmed.
Yan LiChang-Rong LiZhen-Min DuCui-Ping GuoXin-Qing Zhao
Two kinds of experimental methods were tried in the present work:(i)the powder metallurgy method combined with differential thermal analysis(DTA)to determine the metastable liquidus miscibility gap for a Fe–Cu binary system and(ii)the high-temperature melting method combined with isothermal treatment to determine the stable liquidus miscibility gap for a Fe–Sn binary system.The experimental method was adopted according to the characteristics of the liquidus miscibility gap of the specific system.Using the powder metallurgy method,a uniform microstructure morphology and chemical composition was obtained in the DTA specimen,and the phase-separation temperature of the supercooled metastable liquid was measured.The isothermal treatment was applied for the samples inside the stable liquidus miscibility gap;here,equilibrated compositions were reached,and a layered morphology was formed after rapid cooling.The liquid miscibility gaps of the Fe–Cu and Fe–Sn binary systems were measured,and the peak temperatures of the corresponding miscibility gaps were determined to be about 1417°C at x(Cu)=0.465 at%and 1350°C at x(Sn)=0.487 at%,respectively.On the basis of the experimental results,both the Fe–Cu and the Fe–Sn binary systems were thermodynamically assessed.
On the basis of the experimental data of phase equilibria and thermochemical properties available from literatures, a critical assessment for the Ni?Yb binary system was carried out using the CALPHAD (calculation of phase diagrams) method. The liquid phase is modeled as the associate model with the constituent species Ni, Yb and YbNi3, owing to the sharp change of the enthalpy of mixing of liquid phase at the composition of around 25% Yb (mole fraction). The terminal solid solutions FCC_A1 (Ni/Yb) and BCC_A2 (Yb) are described by the substitutional solution model with the Redlich?Kister polynomial. The intermetallic compounds, Yb2Ni17, YbNi5, YbNi3, YbNi2, α-YbNi and β-YbNi, are treated as strict stoichiometric compounds, since there are no noticeable homogeneity ranges reported for these compounds. A set of self-consistent thermodynamic parameters for the Ni?Yb binary system are obtained. According to the presently assessed results, the thermochemical properties and the phase boundary data can be well reproduced.